Araştırma Makalesi
BibTex RIS Kaynak Göster

An Analysis of Dynamic Geometry Software Tasks in The Interactive Mathematics Textbook of The Triangles Unit

Yıl 2023, Cilt: 12 Sayı: 3, 599 - 615, 28.09.2023
https://doi.org/10.30703/cije.1232859

Öz

Interactive books are one of the current digital education and training materials on the website prepared by the Republic of Türkiye Ministry of National Education, General Directorate of Secondary Education. The purpose of this research was to examine the learning opportunities that the dynamic geometry software tasks in the interactive mathematics textbook of the triangle unit offer students. Learning opportunities in the 10 dynamic geometry software tasks in the triangles unit (ninth grade) were analyzed by considering the coordination of mathematical depth and technological actions of prompts, the feedback provided on the screen for the expected result in the task, and the place of the task in the book content. Prompts classified as basic and sub were analyzed using Trocki and Hollebrands’ (2018) Dynamic Geometry Task Analysis Framework. The findings showed that prompts in the tasks were insufficient to coordinate mathematical depth with technological actions. The mathematical ideas expected to be gained by completing the tasks were often presented on the screen, which can be viewed directly or by clicking the checkbox. Tasks were usually included in the book’s content after definitions, explanations, or examples of related mathematical ideas. Implications were made for developing the tasks to make the mathematical concepts and relationships meaningful for students.

Kaynakça

  • Alajmi, A. H. (2012). How do elementary textbooks address fractions? A review of mathematics textbooks in the USA, Japan, and Kuwait. Educational Studies in Mathematics, 79, 239-261. https://doi.org/10.1007/s10649-011-9342-1
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72. https://doi.org/10.1007/BF02655708
  • Ayyıldız, H., Salihoğlu S., & Güven, B. (2019). Ortaokul ve lise matematik ders kitaplarında bulunan dinamik matematik yazılımı destekli etkinliklerin incelenmesi. A. Baki, B. Güven ve M. Güler (Editörler), 4. Uluslararası Türk Bilgisayar ve Matematik Eğitimi Sempozyumu Tam Metin e-Kitabı (734–742). https://bilmat.org/turkbilmat2019/
  • Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253. https://doi.org/10.1007/s10758-010-9169-3
  • Bokosmaty, S., Mavilidi, M. F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, 113, 313–326. https://doi.org/10.1016/j.compedu.2017.06.008
  • Bowen, G.A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027
  • Bozkurt, G., & Yigit Koyunkaya, M. (2022). Supporting prospective mathematics teachers’ planning and teaching technology-based tasks in the context of a practicum course. Teaching and Teacher Education, 119, 103830. https://doi.org/10.1016/j.tate.2022.103830
  • Dede, S. Ç., & Arslan, S. (2019). Review of the articles and thesis conducted on math textbooks in Turkey between 2002-2018. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(1), 176–195. https://doi.org/10.17522/balikesirnef.546301
  • Doğan, M. F. (2019). Opportunities to learn reasoning and proof in eighth-grade mathematics textbook. Inonu University Journal of the Faculty of Education, 20(2), 601–618. http://doi.org/10.17679/inuefd.527243
  • Duatepe-Paksu, A., & Akkuş, O. (2007). An observational study in elementary mathematics classroom. Education and Science, 32(145), 16–22. https://www.researchgate.net/publication/298858325
  • Gueudet, G., Pepin, B., Restrepo, A., Sabra, H., & Trouche, L. (2018). E-textbooks and connectivity: proposing an analytical framework. International Journal of Science and Mathematics Education, 16(3), 539–558. https://doi.org/10.1007/s10763-016-9782-2
  • Hollebrands, K. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192. http://www.jstor.org/stable/30034955
  • Howson, G. (2013). The development of mathematics textbooks: Historical reflections from a personal perspective. ZDM, 45(5), 647–658. https://doi.org/10.1007/s11858-013-0511-9
  • Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Dordrecht: Kluwer Academic Publishers.
  • Jones, K. (2001). Learning geometrical concepts using dynamic geometry software. In K. Irwin (Ed.), Mathematics education research: A catalyst for change (pp. 50–58). University of Auckland. https://eprints.soton.ac.uk/41222/
  • Karakuş, F., & Korkutan, E. (2021). An examination of proofs on geometry and measurement in middle school mathematics textbooks within the scope of reasoning and evidence analytical framework. Manisa Celal Bayar University Journal of the Faculty of Education, 9(1), 1–16. https://doi.org/10.52826/mcbuefd.840090
  • Kılıçoğlu, E. (2020). Ortaokul matematik ders kitabı etkinliklerinde soyutlama becerisinin incelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 16(3), 628–650. https://doi.org/10.17860/mersinefd.736764
  • Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317. https://doi.org/10.1023/A:1013309728825
  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43(3), 325–336. https://doi.org/10.1007/s11858-011-0329-2
  • Milli Eğitim Bakanlığı (MEB) (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Yayınları. http://mufredat.meb.gov.tr/Programlar.aspx
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Or, A. C. M. (2013). Designing tasks to foster operative apprehension for visualization and reasoning in dynamic geometry environment. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 89–98), Oxford, UK. https://hal.science/hal-00834054v2
  • Öçal, M. F., & Şimşek, M. (2017). Matematik öğretmen adaylarının FATİH projesi ve matematik eğitiminde teknoloji kullanımına yönelik görüşleri. Turkish Online Journal of Qualitative Inquiry, 8(1), 91–121. https://doi.org/10.17569/tojqi.288857
  • Özçakır, B., Aytekin, C., Altunkaya, B., & Doruk, B. K. (2015). Effects of using dynamic geometry activities on eighth grade students’ achievement levels and estimation performances in triangles. Participatory Educational Research, 2(3), 43–54. http://dx.doi.org/10.17275/per.15.22.2.3
  • Pepin, B. (2021). Connectivity in support of student co-design of innovative mathematics curriculum trajectories. ZDM, 53(6), 1221-1232. https://doi.org/10.1007/s11858-021-01297-4
  • Pepin, B., Gueudet, G., Yerushalmy, M., Trouche, L., & Chazan, D. (2016). E-textbooks in/for teaching and learning mathematics: A potentially transformative educational technology. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 636–661). Taylor & Francis.
  • Silver, E. A. (2009). Cross-national comparisons of mathematics curriculum materials: what might we learn? ZDM, 41(6), 827–832. https://doi.org/10.1007/s11858-009-0209-1
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317. https://doi.org/10.1023/A:1024305603330
  • Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.
  • Stein, M., Remillard, J., & Smith, M. (2007). How curriculum influences students’ learning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Information Age.
  • Toprak, Z., & Özmantar, M. F. (2019). Türkiye ve Singapur 5. sınıf matematik ders kitaplarının çözümlü örnekler ve sorular açısından karşılaştırmalı analizi. Turkish Journal of Computer and Mathematics Education, 10(2), 539–566. https://doi.org/10.16949/turkbilmat.490210
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in Educational Evaluation, 31(4), 315–327. https://doi.org/10.1016/j.stueduc.2005.11.005
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2–3), 110–138. https://doi.org/10.1007/s40751-018-0041-8
  • Tsamir, P., Tirosh, D., & Levenson, E. (2008). Intuitive non examples: The case of triangles. Educational Studies in Mathematics, 69(2), 81–95. https://doi.org/10.1007/s10649-008-9133-5
  • Ubuz, B., & Aydın, U. (2018). Geometry knowledge test about triangles: Evidence on validity and reliability. ZDM, 50(4), 659–673. https://doi.org/10.1007/s11858-018-0964-y
  • Uğurel, I., Bukova-Güzel, E., & Kula, S. (2010). Matematik öğretmenlerinin öğrenme etkinlikleri hakkındaki görüş ve deneyimleri. Buca Eğitim Fakültesi Dergisi, 28, 103–123. http://hdl.handle.net/20.500.12397/115
  • Ulusoy, F. (2021). Prospective early childhood and elementary school mathematics teachers’ concept images and concept definitions of triangles. International Journal of Science and Mathematics Education, 19(5), 1057–1078. https://doi.org/10.1007/s10763-020-10105-6
  • Ulusoy, F., & Turuş, İ. B. (2022). The mathematical and technological nature of tasks containing the use of dynamic geometry software in middle and secondary school mathematics textbooks. Education and Information Technologies, 11089–11113. https://doi.org/10.1007/s10639-022-11070-z
  • Venturini, M., & Sinclair, N. (2017). Designing assessment tasks in a dynamic geometry environment. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks Potential and Pitfalls (pp. 77–98). Springer. https://link.springer.com/book/10.1007/978-3-319-43423-0
  • Watson, A., Ohtani, M., Ainley, J., Bolite Frant, J., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D., & Yang, Y. (2013). Introduction. In C. Margolinas (Ed.), Task design in mathematics education, Proceedings of ICMI study 22 (pp. 7–14). https://hal.archives-ouvertes.fr/hal-00834054v3/document
  • Yiğit-Koyunkaya, M., & Bozkurt, G. (2019). Matematik Öğretmen Adaylarının Tasarladığı GeoGebra Etkinliklerinin Matematiksel Derinlik ve Teknolojik Eylem Açısından İncelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 515–544. https://doi.org/10.17522/balikesirnef.573521
  • Zeybek, Z. , Üstün, A. & Birol, A. (2018). Matematiksel İspatların Ortaokul Matematik Ders Kitaplarındaki Yeri. İlköğretim Online, 17(3) , 1317–1335. https://doi.org/10.17051/ilkonline.2018.466349
  • Zmazek, E., Zmazek, B., & Zmazek, J. (2015). Some kinds of use of i-textbooks. In N. Mastorakis, V. Mladenov, I. Rudas, A. Bulucea, B. Reljin, G. Vachtsevanos, K. Psarris (Eds.), Mathematics and computers in sciences and industry (pp. 121–124). http://www.inase.org/library/2015/books/MCSI.pdf

Etkileşimli Matematik Ders Kitabında Yer Alan Dinamik Geometri Yazılımı Görevlerinin Bir Analizi: Üçgenler Ünitesi Örneği

Yıl 2023, Cilt: 12 Sayı: 3, 599 - 615, 28.09.2023
https://doi.org/10.30703/cije.1232859

Öz

Etkileşimli kitaplar, Milli Eğitim Bakanlığı Ortaöğretim Genel Müdürlüğü tarafından hazırlanan OGM Materyal adlı web sitesinde yer alan güncel dijital eğitim ve öğretim materyallerinden birisidir. Bu araştırmanın amacı, üçgenler ünitesine ait etkileşimli matematik ders kitabında yer alan dinamik geometri yazılımı görevlerinin öğrencilere sunacağı öğrenme fırsatlarını incelemektir. Dokuzuncu sınıf üçgenler ünitesinde yer alan 10 tane dinamik geometri yazılımı görevindeki öğrenme fırsatları; görevdeki yazılı yönlendirme veya soruların matematiksel derinlik ve teknolojik eylemler koordinasyonu, görevde ulaşılması beklenen sonuca yönelik ekranda sağlanan dönütler ve görevin kitap içeriğindeki yeri dikkate alınarak analiz edilmiştir. Dinamik geometri yazılımı görevlerinde temel ve alt olarak sınıflandırılan yazılı yönlendirme veya sorular, Trocki ve Hollebrands’ın (2018) Dinamik Geometri Görevi Analiz Çerçevesi kullanılarak değerlendirilmiştir. Bulgular, araştırmada ele alınan görevlerde yer alan yazılı yönlendirme veya soruların teknolojik eylemlerle matematiksel derinliği koordine etmede yetersiz kaldığını göstermektedir. Görevlerin tamamlanmasıyla kazanılması beklenilen matematiksel fikirler, çoğunlukla ekranda doğrudan veya işaret kutusunun tıklanmasıyla görülebilecek şekilde sunulmaktadır. Görevler kitaptaki içerikte genellikle ilgili matematiksel fikirlere ait tanımlar, açıklamalar veya örneklerden sonra yer almaktadır. Araştırmada, söz konusu matematiksel kavramlar ve ilişkileri öğrenciler için anlamlı kılmak adına, görevlerin geliştirilmesine yönelik bazı önerilerde bulunulmuştur.

Kaynakça

  • Alajmi, A. H. (2012). How do elementary textbooks address fractions? A review of mathematics textbooks in the USA, Japan, and Kuwait. Educational Studies in Mathematics, 79, 239-261. https://doi.org/10.1007/s10649-011-9342-1
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72. https://doi.org/10.1007/BF02655708
  • Ayyıldız, H., Salihoğlu S., & Güven, B. (2019). Ortaokul ve lise matematik ders kitaplarında bulunan dinamik matematik yazılımı destekli etkinliklerin incelenmesi. A. Baki, B. Güven ve M. Güler (Editörler), 4. Uluslararası Türk Bilgisayar ve Matematik Eğitimi Sempozyumu Tam Metin e-Kitabı (734–742). https://bilmat.org/turkbilmat2019/
  • Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253. https://doi.org/10.1007/s10758-010-9169-3
  • Bokosmaty, S., Mavilidi, M. F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, 113, 313–326. https://doi.org/10.1016/j.compedu.2017.06.008
  • Bowen, G.A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027
  • Bozkurt, G., & Yigit Koyunkaya, M. (2022). Supporting prospective mathematics teachers’ planning and teaching technology-based tasks in the context of a practicum course. Teaching and Teacher Education, 119, 103830. https://doi.org/10.1016/j.tate.2022.103830
  • Dede, S. Ç., & Arslan, S. (2019). Review of the articles and thesis conducted on math textbooks in Turkey between 2002-2018. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(1), 176–195. https://doi.org/10.17522/balikesirnef.546301
  • Doğan, M. F. (2019). Opportunities to learn reasoning and proof in eighth-grade mathematics textbook. Inonu University Journal of the Faculty of Education, 20(2), 601–618. http://doi.org/10.17679/inuefd.527243
  • Duatepe-Paksu, A., & Akkuş, O. (2007). An observational study in elementary mathematics classroom. Education and Science, 32(145), 16–22. https://www.researchgate.net/publication/298858325
  • Gueudet, G., Pepin, B., Restrepo, A., Sabra, H., & Trouche, L. (2018). E-textbooks and connectivity: proposing an analytical framework. International Journal of Science and Mathematics Education, 16(3), 539–558. https://doi.org/10.1007/s10763-016-9782-2
  • Hollebrands, K. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164–192. http://www.jstor.org/stable/30034955
  • Howson, G. (2013). The development of mathematics textbooks: Historical reflections from a personal perspective. ZDM, 45(5), 647–658. https://doi.org/10.1007/s11858-013-0511-9
  • Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 121–128). Dordrecht: Kluwer Academic Publishers.
  • Jones, K. (2001). Learning geometrical concepts using dynamic geometry software. In K. Irwin (Ed.), Mathematics education research: A catalyst for change (pp. 50–58). University of Auckland. https://eprints.soton.ac.uk/41222/
  • Karakuş, F., & Korkutan, E. (2021). An examination of proofs on geometry and measurement in middle school mathematics textbooks within the scope of reasoning and evidence analytical framework. Manisa Celal Bayar University Journal of the Faculty of Education, 9(1), 1–16. https://doi.org/10.52826/mcbuefd.840090
  • Kılıçoğlu, E. (2020). Ortaokul matematik ders kitabı etkinliklerinde soyutlama becerisinin incelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 16(3), 628–650. https://doi.org/10.17860/mersinefd.736764
  • Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317. https://doi.org/10.1023/A:1013309728825
  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM, 43(3), 325–336. https://doi.org/10.1007/s11858-011-0329-2
  • Milli Eğitim Bakanlığı (MEB) (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: MEB Yayınları. http://mufredat.meb.gov.tr/Programlar.aspx
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Or, A. C. M. (2013). Designing tasks to foster operative apprehension for visualization and reasoning in dynamic geometry environment. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 89–98), Oxford, UK. https://hal.science/hal-00834054v2
  • Öçal, M. F., & Şimşek, M. (2017). Matematik öğretmen adaylarının FATİH projesi ve matematik eğitiminde teknoloji kullanımına yönelik görüşleri. Turkish Online Journal of Qualitative Inquiry, 8(1), 91–121. https://doi.org/10.17569/tojqi.288857
  • Özçakır, B., Aytekin, C., Altunkaya, B., & Doruk, B. K. (2015). Effects of using dynamic geometry activities on eighth grade students’ achievement levels and estimation performances in triangles. Participatory Educational Research, 2(3), 43–54. http://dx.doi.org/10.17275/per.15.22.2.3
  • Pepin, B. (2021). Connectivity in support of student co-design of innovative mathematics curriculum trajectories. ZDM, 53(6), 1221-1232. https://doi.org/10.1007/s11858-021-01297-4
  • Pepin, B., Gueudet, G., Yerushalmy, M., Trouche, L., & Chazan, D. (2016). E-textbooks in/for teaching and learning mathematics: A potentially transformative educational technology. In L. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 636–661). Taylor & Francis.
  • Silver, E. A. (2009). Cross-national comparisons of mathematics curriculum materials: what might we learn? ZDM, 41(6), 827–832. https://doi.org/10.1007/s11858-009-0209-1
  • Sinclair, M. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317. https://doi.org/10.1023/A:1024305603330
  • Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.
  • Stein, M., Remillard, J., & Smith, M. (2007). How curriculum influences students’ learning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Information Age.
  • Toprak, Z., & Özmantar, M. F. (2019). Türkiye ve Singapur 5. sınıf matematik ders kitaplarının çözümlü örnekler ve sorular açısından karşılaştırmalı analizi. Turkish Journal of Computer and Mathematics Education, 10(2), 539–566. https://doi.org/10.16949/turkbilmat.490210
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in Educational Evaluation, 31(4), 315–327. https://doi.org/10.1016/j.stueduc.2005.11.005
  • Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2–3), 110–138. https://doi.org/10.1007/s40751-018-0041-8
  • Tsamir, P., Tirosh, D., & Levenson, E. (2008). Intuitive non examples: The case of triangles. Educational Studies in Mathematics, 69(2), 81–95. https://doi.org/10.1007/s10649-008-9133-5
  • Ubuz, B., & Aydın, U. (2018). Geometry knowledge test about triangles: Evidence on validity and reliability. ZDM, 50(4), 659–673. https://doi.org/10.1007/s11858-018-0964-y
  • Uğurel, I., Bukova-Güzel, E., & Kula, S. (2010). Matematik öğretmenlerinin öğrenme etkinlikleri hakkındaki görüş ve deneyimleri. Buca Eğitim Fakültesi Dergisi, 28, 103–123. http://hdl.handle.net/20.500.12397/115
  • Ulusoy, F. (2021). Prospective early childhood and elementary school mathematics teachers’ concept images and concept definitions of triangles. International Journal of Science and Mathematics Education, 19(5), 1057–1078. https://doi.org/10.1007/s10763-020-10105-6
  • Ulusoy, F., & Turuş, İ. B. (2022). The mathematical and technological nature of tasks containing the use of dynamic geometry software in middle and secondary school mathematics textbooks. Education and Information Technologies, 11089–11113. https://doi.org/10.1007/s10639-022-11070-z
  • Venturini, M., & Sinclair, N. (2017). Designing assessment tasks in a dynamic geometry environment. In A. Leung & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks Potential and Pitfalls (pp. 77–98). Springer. https://link.springer.com/book/10.1007/978-3-319-43423-0
  • Watson, A., Ohtani, M., Ainley, J., Bolite Frant, J., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D., & Yang, Y. (2013). Introduction. In C. Margolinas (Ed.), Task design in mathematics education, Proceedings of ICMI study 22 (pp. 7–14). https://hal.archives-ouvertes.fr/hal-00834054v3/document
  • Yiğit-Koyunkaya, M., & Bozkurt, G. (2019). Matematik Öğretmen Adaylarının Tasarladığı GeoGebra Etkinliklerinin Matematiksel Derinlik ve Teknolojik Eylem Açısından İncelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 13(2), 515–544. https://doi.org/10.17522/balikesirnef.573521
  • Zeybek, Z. , Üstün, A. & Birol, A. (2018). Matematiksel İspatların Ortaokul Matematik Ders Kitaplarındaki Yeri. İlköğretim Online, 17(3) , 1317–1335. https://doi.org/10.17051/ilkonline.2018.466349
  • Zmazek, E., Zmazek, B., & Zmazek, J. (2015). Some kinds of use of i-textbooks. In N. Mastorakis, V. Mladenov, I. Rudas, A. Bulucea, B. Reljin, G. Vachtsevanos, K. Psarris (Eds.), Mathematics and computers in sciences and industry (pp. 121–124). http://www.inase.org/library/2015/books/MCSI.pdf
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Hilal Gülkılık 0000-0002-2664-3288

Yayımlanma Tarihi 28 Eylül 2023
Yayımlandığı Sayı Yıl 2023Cilt: 12 Sayı: 3

Kaynak Göster

APA Gülkılık, H. (2023). Etkileşimli Matematik Ders Kitabında Yer Alan Dinamik Geometri Yazılımı Görevlerinin Bir Analizi: Üçgenler Ünitesi Örneği. Cumhuriyet Uluslararası Eğitim Dergisi, 12(3), 599-615. https://doi.org/10.30703/cije.1232859

e-ISSN: 2147-1606

14550        14551