Review
BibTex RIS Cite

Tendencies of Representation Studies in Mathematics Education in Turkey: A Thematic Content Analysis

Year 2022, Volume: 11 Issue: 1, 127 - 144, 28.03.2022
https://doi.org/10.30703/cije.969821

Abstract

The aim of this research is to examine the studies made in the context of representation in Turkey between 2002-2020 from a holistic perspective. For this purpose, 41 articles and 53 graduate theses, which are open to access and whose full texts can be accessed, in the YÖK National Thesis Center, Google Scholar search engine, YÖK Academic, TÜBİTAK-ULAKBİM DergiPark and EBSCOhost-ERIC databases related to representation between 2002-2020 are included in the research. These studies were examined in detail according to their publication years, types, research methods used, sample or study groups, aims and results and analyzed with thematic content analysis. According to the findings obtained from the studies examined, it has been seen that there are more studies on representations in recent years, and articles and master's theses are dominant as a genre. Considering the research methods used in the studies, it was determined that the most studies were done with the case study method, which is one of the qualitative methods. As the sample/study group, mostly teacher candidates and middle school students were used in the studies. Most studies have aimed to examine representations in the context of a topic or learning domain. One of the common conclusions of the reviewed studies is that pre-service teachers and students have low ability to transition between different representations of related concepts and topics, and they have difficulties and fail in the process. In line with the results obtained from the studies examined, various suggestions were made for future studies on representation

References

  • Adu-Gyamfi, K. (1993). External multiple representations in mathematics teaching. (Unpublished Master Thesis). Graduate Faculty of North Carolina State University, USA.
  • Arcavi, A. (2003). The role of representation in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241.https://doi.org/10.1023/A:1024312321077
  • Batdı V. ve Oral B. (2020). Bilimsel araştırmalarda geçerlik ve güvenirlik. Oral B. ve Çoban A. (Ed.), Kuramdan uygulamaya eğitimde bilimsel araştırma yöntemleri içinde (s. 115-145). Pegem Akademi.
  • Bergqvist, T. (2005). How students verify conjectures: Teachers’ expectations. Journal of Mathematics Teacher Education, 8, 171–191.https://doi.org/10.1007/s10857-005-4797-6
  • Bergwall, A. (2019). Proof-related reasoning in upper secondary school: characteristics of Swedish and Finnish textbooks. International Journal of Mathematical Education in Science and Technology, 1-21. https://doi.org/10.1080/ 0020739X.2019.1704085
  • Brenner, S. C. & Sung, L. Y. (1997). Multigrid methods for the computation of singular solutions and stress intensity factors II: Crack singularities. BIT Numerical Mathematics, 37(3), 623-643.https://doi.org/10.1007/BF02510243
  • Brinker, L. (1996). Representations and students’ rational number reasoning. (Unpublished doctoral dissertation). University of Wisconsin, Madison.
  • Cai, J. (2005). US and Chinese teachers’ constructing, knowing and evaluating representations to teach mathematics. Mathematical Thinking and Learning, 7(2), 135- 169.https://doi.org/10.1207/s15327833mtl0702_3
  • Cleaves, W. P. (2008). Promoting mathematics accessibility through multiple representations jigsaws. Mathematics Teaching in the Middle School, 13(8), 446-452. https://doi.org/10.5951/MTMS.13.8.0446
  • Cobb, P., Yackel, E. & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23(1), 2-33. https://doi.org/ 10.2307/749161
  • Cuoco, A. A. (Ed.). (2001). The Roles of Representation in School Mathematics (2001 Yearbook). National Council of Teachers of Mathematics.
  • Çalık, M. ve Sözbilir, M. (2014). İçerik analizinin parametreleri. Eğitim ve Bilim, 39(174), 33-38. http://dx.doi.org/ 10.15390/EB.2014.3412
  • Erbilgin, E. (2003). Effects of spatial visualization and achievement on students’ use of multiple representations. (Unpublished Master Thesis). Florida State University,ABD.
  • Frankel, R. M. & Devers, K. J. (2000). Study design in qualitative research. Education for health: Change in learning and practice, 13(2), 251-261.
  • Gagatsis, A. & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational psychology, 24(5), 645-657.
  • Goldin, G. A. & Janvier, C. (1998). Representations and the psychology of mathematics education. The Journal of Mathematical Behavior, 17(1), 1-4.
  • Goldin, G. A. & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics, (pp. 1-23). NCTM Publications.
  • Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics, Journal of Mathematical Behavior, 17(2), 137–165. https://doi.org/10.1016/S0364-0213(99)80056-1
  • Greeno, J. G. & Hall, R. P. (1997). Practicing Representation: Learning with and about representational forms. The Phi Delta Kappan,78(5), 361-367.
  • Gürbüz R. ve Şahin S. (2020). İlişkilendirme becerisi kapsamında ortaokul matematik programlarının incelenmesi. Özmantar, M. F., Akkoç, H., Kuşdemir Kayıran, B. ve Özyurt, M. (Ed.), Ortaokul matematik öğretim programları tarihsel bir inceleme içinde (s. 379-382). Pegem Akademi Yayınları.
  • Güven, B. ve Karataş, Ş. (2003). Dinamik geometri yazılımı Cabri ile geometri öğrenme: öğrenci görüşleri, Turkish Online Journal of Educational Technology, 2(2), 67-78.
  • Haggarty, L. & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what. British Educational Research Journal, 28(4), 567-590. https://doi.org/10.1080/0141192022000005832
  • Herbel-Eisenmann, B. A. (2002). Using student contributions and multiple representations to develop mathematical language. Mathematics Teaching in the Middle School, 8(2), 100-105. https://doi.org/10.5951/MTMS.8.2.0100
  • Hohenwarter, M. & Preiner, J. (2007). Dynamic mathematics with GeoGebra. Journal of Online Mathematics and Its Applications, 7, 1448.
  • Hohenwarter, M., Jarvis, D. & Lavicza, Z. (2009). Linking geometry, algebra, and mathematics teachers: GeoGebra goftware and the establishment of the international GeoGebra institute. The International Journal for Technology in Mathematics Education, 16(2), 83-86.
  • Janvier, C. (1985). Conceptions and representations: the circle as an example. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago.
  • Kaput, J. (1987). Toward a theory of symbol use in mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 159-196). Lawrence Eribaum Associates. Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner ve C. Kieran (Eds). Research issues in the learning and teaching of algebra (pp. 167-194). Lawrence Eribaum Associates. https://doi.org/ 10.4324/9781315044378
  • Kaput, J. J. (1992). Technology and mathematics education. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). Macmillan.
  • Kilpatrick, J., Swafford, J. & Findell, B. (2002). Adding it up: Helping children learn mathematics. The National Academies Press. Retrieved May 11, 2021 from https://www.nap.edu/catalog/9822/adding-it-up-helping-children-learn-mathematics
  • Kuntze, S., Prinz, E., Friesen, M., Batzel-kremer, A., Bohl, T. & Kleinknecht, M. (2018). Using multiple representations as part of the mathematical language in classrooms : ınvestigating teachers ’ support in a video analysis. In Planas & Schütte, M. (Eds.), Proceedings of the IV ERME Topic Conference ’Classroom-based research on mathematics and language (pp. 96-102). Dresden, Germany: Technical University of Dresden / ERME.
  • Lehrer, R. & Schauble, L. (2003). Origins and Evolution of Model-Based Reasoning in Mathematics and Science. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 59-70). Lawrence Erlbaum.
  • Lesh, R.A. & Doerr, H. (2003). Foundations of model and modeling perspectives on mathematic teaching and learning. In R.A. Lesh and H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on problem solving, learning, and teaching. Lawrance Erlbaum.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd ed). Sage
  • Milli Eğitim Bakanlığı (2005). İlköğretim matematik programı. Millî Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı (2013). Ortaokul matematik dersi öğretim programı. Millî Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı (2017). Ortaokul matematik dersi öğretim programı. Millî Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı (2018). Matematik dersi öğretim programı (İlkokul ve Ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8.sınıflar). Millî Eğitim Bakanlığı.
  • National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. NCTM Publications.
  • Neuendorf, K. A. (2002). The content analysis guidebook. Sage Publications.
  • Newton, D. P. & Newton, L. D. (2007). Could elementary mathematics textbooks help give attention to reasons in the classroom. Educational Studies in Mathematics, 64(1), 69-84. https://doi.org/10.1007/s10649-005-9015-z
  • OECD (2019). PISA 2018 Assessment and analytical framework. OECD Publishing.https://doi.org/10.1787/b25efab8-en
  • Özgün-Koca, A. (1998). Students’ use of representations in mathematics education. Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. NC:Raleigh, North Carolina.
  • Pape, S. J. & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding, Theory into Practice, 40(2), 118-127. https://doi.org/10.1207/s15430421tip4002_6
  • Petersson, J., Sayers, J., Rosenqvist, E. & Andrews, P. (2020). Two novel approaches to the content analysis of school mathematics textbooks. International Journal of Research & Method in Education, 44(2), 208–222. https://doi.org/10. 1080/174 3727X.2020.1766437
  • Schultz, J. E. & Waters, M. S. (2000). Why representations?. The Mathematics Teacher, 93(6), 448-453.
  • Sherin, B. (2000). How students invent representations of motion?. Journal of Mathematical Behavior, 19(4), 399-441. https://doi.org/10.1016/S0732-3123(01)00052-9
  • Son, J. W. & Diletti, J. (2017). What can we learn from textbook analysis?. Son, J. W., Watanabe, T., & Lo, J. J. (Ed.)., What matters? Research trends in international comparative studies in mathematics education içinde (s. 3-32.). Springer.
  • Stylianou, D. A. (2010). Teachers’ conceptions of representation in middle school mathematics. Journal of Mathematics Teacher Education, 13(4), 325-343.
  • Tripathi, P. N. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in The Middle School, 13(8), 438-445. https://doi.org/10.5951/MTMS.13.8.0438
  • Vicente, S., Sánchez, R. & Verschaffel, L. (2019). Word problem solving approaches in mathematics textbooks: A comparison between Singapore and Spain. European Journal of Psychology of Education, 35(3), 567-587. https://doi.org/10.1007/s1 0212-019-00447-3
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde araştırma yöntemleri (11.Baskı). Seçkin yayıncılık.
  • Zazkis, R. & Liljedahl, P. (2004). Understanding the primes: the role of representation. Journal for Research in Mathematics Education, 35(3),164-168. https://doi.org/10.2307/30034911
  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217. https://doi.org/10.1016/S0364-0213(99)80022-6

Türkiye’deki Matematik Eğitimi Alanındaki Temsil Araştırmalarının Eğilimleri: Tematik İçerik Analizi Çalışması

Year 2022, Volume: 11 Issue: 1, 127 - 144, 28.03.2022
https://doi.org/10.30703/cije.969821

Abstract

Bu araştırmanın amacı Türkiye’de 2002-2020 yılları arasında temsil bağlamında yapılmış olan çalışmaları bütüncül bir bakış açısıyla incelemektir. Bu amaç doğrultusunda 2002-2020 yılları arası temsil ile ilgili YÖK Ulusal Tez Merkezi, Google Akademik arama motoru, YÖK Akademik, TÜBİTAK-ULAKBİM DergiPark ve EBSCOhost-ERIC veri tabanlarında yer alan erişime açık ve tam metinlerine ulaşılabilen 41 makale ve 53 lisansüstü tez araştırma kapsamına dahil edilmiştir. Bu çalışmalar yayım yıllarına, türlerine, kullanılan araştırma yöntemlerine, örneklem/çalışma gruplarına, amaçlarına ve sonuçlarına göre detaylı olarak incelenmiş ve tematik içerik analizi ile analiz edilmiştir. İncelenen çalışmalardan elde edilen bulgulara göre, temsillerle ilgili son yıllarda yapılan çalışmaların daha fazla olduğu ve tür olarak makale ve yüksek lisans tezlerinin ağırlıkta olduğu görülmüştür. Çalışmalarda kullanılan araştırma yöntemlerine bakıldığında ise en fazla çalışmanın nitel yöntemlerden durum çalışması yöntemi ile yapıldığı belirlenmiştir. Örneklem/çalışma grubu olarak çalışmalarda çoğunlukla öğretmen adayları ve ortaokul öğrencileri kullanılmıştır. Çoğu çalışma, temsilleri bir konu veya öğrenme alanı bağlamında incelemeyi amaçlamıştır. İncelenen çalışmaların yaygın olarak ulaştıkları sonuçlardan biri öğretmen adaylarının ve öğrencilerin ilgili kavramların ve konuların farklı temsilleri arasında geçiş yapma becerilerinin düşük olduğu ve süreçte zorluk yaşayıp başarısız olduklarıdır. İncelenen çalışmalardan elde edilen sonuçlar doğrultusunda temsil ile ilgili ileride yapılacak çalışmalar için çeşitli önerilerde bulunulmuştur.

References

  • Adu-Gyamfi, K. (1993). External multiple representations in mathematics teaching. (Unpublished Master Thesis). Graduate Faculty of North Carolina State University, USA.
  • Arcavi, A. (2003). The role of representation in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241.https://doi.org/10.1023/A:1024312321077
  • Batdı V. ve Oral B. (2020). Bilimsel araştırmalarda geçerlik ve güvenirlik. Oral B. ve Çoban A. (Ed.), Kuramdan uygulamaya eğitimde bilimsel araştırma yöntemleri içinde (s. 115-145). Pegem Akademi.
  • Bergqvist, T. (2005). How students verify conjectures: Teachers’ expectations. Journal of Mathematics Teacher Education, 8, 171–191.https://doi.org/10.1007/s10857-005-4797-6
  • Bergwall, A. (2019). Proof-related reasoning in upper secondary school: characteristics of Swedish and Finnish textbooks. International Journal of Mathematical Education in Science and Technology, 1-21. https://doi.org/10.1080/ 0020739X.2019.1704085
  • Brenner, S. C. & Sung, L. Y. (1997). Multigrid methods for the computation of singular solutions and stress intensity factors II: Crack singularities. BIT Numerical Mathematics, 37(3), 623-643.https://doi.org/10.1007/BF02510243
  • Brinker, L. (1996). Representations and students’ rational number reasoning. (Unpublished doctoral dissertation). University of Wisconsin, Madison.
  • Cai, J. (2005). US and Chinese teachers’ constructing, knowing and evaluating representations to teach mathematics. Mathematical Thinking and Learning, 7(2), 135- 169.https://doi.org/10.1207/s15327833mtl0702_3
  • Cleaves, W. P. (2008). Promoting mathematics accessibility through multiple representations jigsaws. Mathematics Teaching in the Middle School, 13(8), 446-452. https://doi.org/10.5951/MTMS.13.8.0446
  • Cobb, P., Yackel, E. & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23(1), 2-33. https://doi.org/ 10.2307/749161
  • Cuoco, A. A. (Ed.). (2001). The Roles of Representation in School Mathematics (2001 Yearbook). National Council of Teachers of Mathematics.
  • Çalık, M. ve Sözbilir, M. (2014). İçerik analizinin parametreleri. Eğitim ve Bilim, 39(174), 33-38. http://dx.doi.org/ 10.15390/EB.2014.3412
  • Erbilgin, E. (2003). Effects of spatial visualization and achievement on students’ use of multiple representations. (Unpublished Master Thesis). Florida State University,ABD.
  • Frankel, R. M. & Devers, K. J. (2000). Study design in qualitative research. Education for health: Change in learning and practice, 13(2), 251-261.
  • Gagatsis, A. & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational psychology, 24(5), 645-657.
  • Goldin, G. A. & Janvier, C. (1998). Representations and the psychology of mathematics education. The Journal of Mathematical Behavior, 17(1), 1-4.
  • Goldin, G. A. & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics, (pp. 1-23). NCTM Publications.
  • Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics, Journal of Mathematical Behavior, 17(2), 137–165. https://doi.org/10.1016/S0364-0213(99)80056-1
  • Greeno, J. G. & Hall, R. P. (1997). Practicing Representation: Learning with and about representational forms. The Phi Delta Kappan,78(5), 361-367.
  • Gürbüz R. ve Şahin S. (2020). İlişkilendirme becerisi kapsamında ortaokul matematik programlarının incelenmesi. Özmantar, M. F., Akkoç, H., Kuşdemir Kayıran, B. ve Özyurt, M. (Ed.), Ortaokul matematik öğretim programları tarihsel bir inceleme içinde (s. 379-382). Pegem Akademi Yayınları.
  • Güven, B. ve Karataş, Ş. (2003). Dinamik geometri yazılımı Cabri ile geometri öğrenme: öğrenci görüşleri, Turkish Online Journal of Educational Technology, 2(2), 67-78.
  • Haggarty, L. & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what. British Educational Research Journal, 28(4), 567-590. https://doi.org/10.1080/0141192022000005832
  • Herbel-Eisenmann, B. A. (2002). Using student contributions and multiple representations to develop mathematical language. Mathematics Teaching in the Middle School, 8(2), 100-105. https://doi.org/10.5951/MTMS.8.2.0100
  • Hohenwarter, M. & Preiner, J. (2007). Dynamic mathematics with GeoGebra. Journal of Online Mathematics and Its Applications, 7, 1448.
  • Hohenwarter, M., Jarvis, D. & Lavicza, Z. (2009). Linking geometry, algebra, and mathematics teachers: GeoGebra goftware and the establishment of the international GeoGebra institute. The International Journal for Technology in Mathematics Education, 16(2), 83-86.
  • Janvier, C. (1985). Conceptions and representations: the circle as an example. Paper presented at the Annual Meeting of the American Educational Research Association, Chicago.
  • Kaput, J. (1987). Toward a theory of symbol use in mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 159-196). Lawrence Eribaum Associates. Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner ve C. Kieran (Eds). Research issues in the learning and teaching of algebra (pp. 167-194). Lawrence Eribaum Associates. https://doi.org/ 10.4324/9781315044378
  • Kaput, J. J. (1992). Technology and mathematics education. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). Macmillan.
  • Kilpatrick, J., Swafford, J. & Findell, B. (2002). Adding it up: Helping children learn mathematics. The National Academies Press. Retrieved May 11, 2021 from https://www.nap.edu/catalog/9822/adding-it-up-helping-children-learn-mathematics
  • Kuntze, S., Prinz, E., Friesen, M., Batzel-kremer, A., Bohl, T. & Kleinknecht, M. (2018). Using multiple representations as part of the mathematical language in classrooms : ınvestigating teachers ’ support in a video analysis. In Planas & Schütte, M. (Eds.), Proceedings of the IV ERME Topic Conference ’Classroom-based research on mathematics and language (pp. 96-102). Dresden, Germany: Technical University of Dresden / ERME.
  • Lehrer, R. & Schauble, L. (2003). Origins and Evolution of Model-Based Reasoning in Mathematics and Science. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 59-70). Lawrence Erlbaum.
  • Lesh, R.A. & Doerr, H. (2003). Foundations of model and modeling perspectives on mathematic teaching and learning. In R.A. Lesh and H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on problem solving, learning, and teaching. Lawrance Erlbaum.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd ed). Sage
  • Milli Eğitim Bakanlığı (2005). İlköğretim matematik programı. Millî Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı (2013). Ortaokul matematik dersi öğretim programı. Millî Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı (2017). Ortaokul matematik dersi öğretim programı. Millî Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı (2018). Matematik dersi öğretim programı (İlkokul ve Ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8.sınıflar). Millî Eğitim Bakanlığı.
  • National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. NCTM Publications.
  • Neuendorf, K. A. (2002). The content analysis guidebook. Sage Publications.
  • Newton, D. P. & Newton, L. D. (2007). Could elementary mathematics textbooks help give attention to reasons in the classroom. Educational Studies in Mathematics, 64(1), 69-84. https://doi.org/10.1007/s10649-005-9015-z
  • OECD (2019). PISA 2018 Assessment and analytical framework. OECD Publishing.https://doi.org/10.1787/b25efab8-en
  • Özgün-Koca, A. (1998). Students’ use of representations in mathematics education. Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. NC:Raleigh, North Carolina.
  • Pape, S. J. & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding, Theory into Practice, 40(2), 118-127. https://doi.org/10.1207/s15430421tip4002_6
  • Petersson, J., Sayers, J., Rosenqvist, E. & Andrews, P. (2020). Two novel approaches to the content analysis of school mathematics textbooks. International Journal of Research & Method in Education, 44(2), 208–222. https://doi.org/10. 1080/174 3727X.2020.1766437
  • Schultz, J. E. & Waters, M. S. (2000). Why representations?. The Mathematics Teacher, 93(6), 448-453.
  • Sherin, B. (2000). How students invent representations of motion?. Journal of Mathematical Behavior, 19(4), 399-441. https://doi.org/10.1016/S0732-3123(01)00052-9
  • Son, J. W. & Diletti, J. (2017). What can we learn from textbook analysis?. Son, J. W., Watanabe, T., & Lo, J. J. (Ed.)., What matters? Research trends in international comparative studies in mathematics education içinde (s. 3-32.). Springer.
  • Stylianou, D. A. (2010). Teachers’ conceptions of representation in middle school mathematics. Journal of Mathematics Teacher Education, 13(4), 325-343.
  • Tripathi, P. N. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in The Middle School, 13(8), 438-445. https://doi.org/10.5951/MTMS.13.8.0438
  • Vicente, S., Sánchez, R. & Verschaffel, L. (2019). Word problem solving approaches in mathematics textbooks: A comparison between Singapore and Spain. European Journal of Psychology of Education, 35(3), 567-587. https://doi.org/10.1007/s1 0212-019-00447-3
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde araştırma yöntemleri (11.Baskı). Seçkin yayıncılık.
  • Zazkis, R. & Liljedahl, P. (2004). Understanding the primes: the role of representation. Journal for Research in Mathematics Education, 35(3),164-168. https://doi.org/10.2307/30034911
  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217. https://doi.org/10.1016/S0364-0213(99)80022-6
There are 53 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Hayrunnisa Ayyıldız 0000-0002-0089-6295

Meral Cansiz Aktas 0000-0003-0425-9565

Publication Date March 28, 2022
Published in Issue Year 2022Volume: 11 Issue: 1

Cite

APA Ayyıldız, H., & Cansiz Aktas, M. (2022). Türkiye’deki Matematik Eğitimi Alanındaki Temsil Araştırmalarının Eğilimleri: Tematik İçerik Analizi Çalışması. Cumhuriyet Uluslararası Eğitim Dergisi, 11(1), 127-144. https://doi.org/10.30703/cije.969821

14550                 

© Cumhuriyet University, Faculty of Education