Research Article
BibTex RIS Cite

Goal, Criterion and Grading: Examination of Rubrics Created by Prospective Mathematics Teachers

Year 2021, Volume: 10 Issue: 3, 974 - 997, 26.09.2021
https://doi.org/10.30703/cije.756661

Abstract

Evaluation and assessment is a basic content knowledge area for teachers and prospective teachers, as well as one of the basic competences in effective teaching. In this context, it is aimed to investigate the rubrics created by prospective elementary school mathematics teachers to assess and grade the solution of a math problem. As a matter of fact, one of the convenient methods to reveal what the prospective teachers expect from the student and the assessment criteria is to investigate the rubrics created by them. This case study, which has a qualitative pattern, 24 prospective elementary school mathematics teachers who took the Evaluation and Assessment course attended. The criterion considered in determining the participants determined by criterion sampling, which is one of the purposeful sampling methods, is that the prospective teachers especially took the Evaluation and Assessment course. The data collected through e-mail internet interview were analyzed by content analysis method. By presenting a problem with the rational numbers to the prospective teachers, their determining the instructional purpose of the given mathematics problem, the criteria they set for assessment and their grading practices were examined. As the main findings of the research, it was determined that in assessing the solution of a given math problem, prospective elementary school mathematics teachers did not consider the curriculum, students' age levels, students' possible mathematical knowledge and differences and they made assessment operational knowledge-weighted. In this context, it can be said that the rubrics prepared by prospective mathematics teachers are insufficient in evaluating student learning mathematically and pedagogically, in supporting mathematics learning and guiding students at this point.

References

  • American Federation of Teachers, National Council on Measurement in Education, and National Education Association (1990). The standards for Teacher competence in the educational assessment of students. Web: http://files.eric.ed.gov/fulltext/ED323186.pdf
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The Elementary School Journal, 90(4), 449-466. https://doi.org/10.1086/461626
  • Baştürk, S., ve Dönmez, G. (2011). Matematik öğretmen adaylarının pedagojik alan bilgilerinin ölçme ve değerlendirme bilgisi bileşeni bağlamında incelenmesi. Journal of Kirsehir Education Faculty, 12(3).
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., .. Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133-180. https://doi.org/10.3102/0002831209345157
  • Behr, M., Lesh, R., Post, T., and Silver E. (1983). Rational Number Concepts. In R. Lesh and M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes, (pp. 91–125). NewYork: Academic Press.

  • Bicer, A., Capraro, R. M., and Capraro, M. M. (2013). Integrating writing into mathematics classroom to ıncrease students' problem solving skills. International Online Journal of Educational Sciences, 5(2).
  • Birgin, O., ve Gürbüz, R. (2008). Sınıf öğretmeni adaylarının ölçme ve değerlendirme konusundaki bilgi düzeylerinin incelenmesi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20, 163-179.
  • Black, P. (2001). Formative Assessment and curriculum consequences. Curriculum and assessment. D. Scott (Ed.). International Perspectives on Curriculum Studies, 1. Ablex: London.
  • Brookhart, S. M. (2011). Educational assessment knowledge and skills for teachers. Educational Measurement: Issues and Practice, 30(1), 3-12.
  • Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M. M., and Reys, R. (1980). Results of the second NAEP mathematics assessment: Secondary school. The Mathematics Teacher, 73(5), 329–338.
  • Chan, Z., and Ho, S. (2019). Good and bad practices in rubrics: the perspectives of students and educators. Assessment and Evaluation in Higher Education, 44(4), 533-545.
  • Creswell, J. W. (2003). A framework for design. In C. D. Laughton and V. Novak (Eds.), Research design: Qualitative, Quantitative and Mixed Methods Approaches (pp. 15–26). Lincoln, Nebraska: Sage Publications.
  • Ebert, C. L. (1993). An assessment of prospective secondary teachers’ pedagogical content knowledge about functions and graphs. Paper presented at the annual meeting of the American Educational Research Association, Atlanta, GA, April 12–16, 1993.
  • Danışmaz, Z. K., ve Adıbatmaz, F. B. K. (2020). Çocuk gelişimi alanında dereceli puanlama anahtarı hazırlama: Deneysel bir uygulama. Çocuk ve Gelişim Dergisi, 3(5), 12-28.
  • Danielson, C. (1997a). A Collection of Performance Tasks and Rubrics: Middle School Mathematics. Larchmont, NY: Eye on Education Inc.
  • Danielson, C. (1997b). A Collection of Performance Tasks and Rubrics: Upper Elementary School Mathematics. Larchmont, NY: Eye on Education Inc.
  • Danielson, C. and Marquez, E. (1998). A Collection of Performance Tasks and Rubrics: High School Mathematics. https://scLhaorlcahrwmornkts,.uNmYa:sEs.yeeduo/npEardeu/vcoalt7i/oinssI1n/3c.
  • Fernandez, C., and Cannon, J. (2005). What Japanese and US teachers think about when constructing mathematics lessons: A preliminary investigation. The Elementary School Journal, 105(5), 481-498. https://doi.org/10.1086/431886
  • Goodrich, H. (1997). Understanding rubrics. Educational Leadership 54(4), 14–17.
  • Goodrich, H. A. (2001). The Effects of Instructional Rubrics on Learning to Write. Educational Theory and Practice Faculty Scholarship. http://scholarsarchive.library.albany.edu/etap_fac_scholar/6
  • Goodrich, H. A. (2005). Teaching with rubrics: The good, the bad, and the ugly. College teaching, 53(1), 27-31.
  • Güneş, P. (2020). Teachers’ perceptions of competence related to rubrics and the problems they confront. International Online Journal of Education and Teaching (IOJET), 7(3). 1239-1250. https://iojet.org/index.php/IOJET/article/view/849
  • Güven Akdeniz, D., and Argün, Z. (2018). Learning outcome literacy: The case of five elementary mathematics teachers. Australian Journal of Teacher Education, 43(11), 3. Hiebert, J., Morris, A. K., Berk, D., and Jansen, A. (2007). Preparing teachers to learn from teaching. Journal of Teacher Education, 58(1), 47-61. https://doi.org/10.1177/0022487106295726
  • Işık, C. (2011). İlköğretim matematik öğretmeni adaylarının kesirlerde çarpma ve bölmeye yönelik kurdukları problemlerin kavramsal analizi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41).
  • Kahan, J. A., Cooper, D. A., and Bethea, K. A. (2003). The role of mathematics teachers' content knowledge in their teaching: A framework for research applied to a study of student teachers. Journal of Mathematics Teacher Education, 6(3), 223-252. https://doi.org/10.1023/A:1025175812582
  • Kersting, N. B., Givvin, K. B., Sotelo, F. L., and Stigler, J. W. (2010). Teachers’ analyses of classroom video predict student learning of mathematics: Further explorations of a novel measure of teacher knowledge. Journal of Teacher Education, 61(1-2), 172- 181. https://doi.org/10.1177/0022487109347875
  • Kennedy, D., Hyland, A., and Ryan, N. (2007). Writing and using learning outcomes: A practical guide. University College Cork.
  • Land, T. J., and Drake, C. (2014). Understanding preservice teachers’ curricular knowledge. In Research Trends in Mathematics Teacher Education (pp. 3-22). Cham: Springer https://doi.org/10.1007/978-3-319-02562-9_1
  • Lincoln, Y. S., and Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage. Marsh, C. J. (2009). Key concepts for understanding curriculum. London, Routledge. https://doi.org/10.4324/9780203870457
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates
  • Mapolelo, D. C. (1999). Do pre-service primary teachers who excel in mathematics become good mathematics teachers? Teaching and Teacher Education, 15(6), 715-725. https://doi.org/10.1016/S0742-051X(99)00012-8
  • Mertler, C. A. (2003, October). Pre-service versus in-service teachers’ assessment literacy: Does classroom experience make a difference? Paper presented at the annual meeting of the Mid- Western Educational Research Association, Columbus, Ohio.
  • Mertler, Craig A. (2000) "Designing scoring rubrics for your classroom," Practical Assessment, Research, and Evaluation: Vol. 7 , Article 25.
DOI: https://doi.org/10.7275/gcy8-0w24
Available at: https://scholarworks.umass.edu/pare/vol7/iss1/25
  • Miles, M. B., and Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Milli Eğitim Bakanlığı (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: MEB.
  • Milli Eğitim Bakanlığı (MEB) (2017). Öğretmenlik mesleği genel yeterlikleri. Öğretmen yetiştirme ve geliştirme genel müdürlüğü. Web: http://oygm.meb.gov.tr/meb_iys_dosyalar/2017_12/11115355_YYRETMENLYK_MESLEYY_GENEL_YETERLYKLERY.pdf
  • Moskal, Barbara M. (2000) "Scoring Rubrics: What, When and How?" Practical Assessment, Research, and Evaluation,7 (3). https://doi.org/10.7275/a5vq-7q66
  • National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VR:NCTM.
  • Pugalee, D. K. (2001). Writing, mathematics and metacognition: looking for connections through students’ work in mathematical problem solving. School Science and Mathematics, 101, 236 (Çevrimci) http/epnet.com/ehost, 8 Mart 2002.
  • Pugalee, D. K. (2001). Writing, Mathematics and Metacognition: Looking for Connections Through Students’ Work in Mathematical Problem Solving., School Science and Mathematics, Vol 101, 236 (Çevrimci) http/epnet.com/ehost, 8 Mart 2002.
  • Putra, H. Z. (2018). A Comparative Study of Danish and Indonesian Pre–service Teachers’ Knowledge of Rational Numbers. Doctoral Dissertation, Copenhagen University
  • Reynders, G., Lantz, J., Ruder, S. M., Stanford, C. L., and Cole, R. S. (2020). Rubrics to assess critical thinking and information processing in undergraduate STEM courses. International Journal of STEM Education, 7(1), 1-15.
  • Shabani, E. A., and Panahi, J. (2020). Examining consistency among different rubrics for assessing writing. Language Testing in Asia, 10(1), 1-25.
  • Schoenfeld, A. H. (1985) Mathematical problem-solving (New York, NY, Academic Press).
  • Schoenfeld, A. H., Minstrell, J., and van Zee, E. (1999). The detailed analysis of an established teacher's non-traditional lesson. The Journal of Mathematical Behavior, 18(3), 281- 325. https://doi.org/10.1016/S0732-3123(99)00035-8
  • Schroeder, T. L., and Lester, F. K. (1989). Developing understanding in mathematics via problem solving. New directions for elementary school mathematics, 31, 42.
  • Sefer, G. D. (2006). Matematik dersinde problem çözme becerilerinin dereceli puanlama anahtarı kullanılarak değerlendirilmesi. Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.
  • Siegler, R. S., and Lortie–Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346–351.
  • Simon, M. A. (2006). Key developmental understandings in mathematics: A direction for investigating and establishing learning goals. Mathematical Thinking and Learning, 8(4), 359-371. https://doi.org/10.1207/s15327833mtl0804_1
  • Stake, R. (1995). The art of case study research. Thousand Oaks, CA: SAGE
  • Stiggins, R. (2002). Assessment crisis: The absence of assessment for learning. Phi Delta Kappan, 83(10), 758-65.
  • Şahin, Ö., ve Soylu, Y. (2019). Matematik öğretmeni adaylarının ölçme ve değerlendirme bilgi gelişimleri. Kuramsal Eğitimbilim Dergisi [Journal of Theoretical Educational Science], 12(1), 47-76.
  • Temel, H., ve Eroğlu, A. O. (2014). İlköğretim 8. sınıf öğrencilerinin sayı kavramlarını anlamlandırmaları üzerine bir çalışma. Kastamonu Eğitim Dergisi, 22(3), 1263–1278.
  • Tian, J., and Siegler, R. S. (2018). Which type of rational numbers should students learn first? Edu- cational Psychology Review, 30(2), 351–372.
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research in Mathematics Education, 5–25.
  • Volante, L., and Fazio, X. (2007). Exploring teacher candidates' assessment literacy: Implications for teacher education reform and Professional development. Canadian Journal of Education, 30(3), 749-770.
  • Webb, N. (2002). Assessment literacy in a standards-based urban education setting. Paper presented at the annual meeting of the American Educational Research Association, New Orleans
  • Yin, R. K. (2013). Case study research: Design and methods. SAGE.

Amaç, Ölçüt ve Puanlama: Matematik Öğretmen Adayları Tarafından Oluşturulan Dereceli Puanlama Anahtarlarının İncelenmesi

Year 2021, Volume: 10 Issue: 3, 974 - 997, 26.09.2021
https://doi.org/10.30703/cije.756661

Abstract

Ölçme ve değerlendirme, öğretmenler ve öğretmen adayları için temel bir bilgi alanı olmasının yanında, etkili öğretimin gerçekleştirilmesinde temel yeterliklerden biridir. Bu bağlamda, araştırmada ilköğretim matematik öğretmen adayları tarafından bir matematik probleminin çözümünü değerlendirmeye yönelik hazırlanan dereceli puanlama anahtarlarının incelenmesi amaçlanmaktadır. Nitekim öğretmen adaylarının öğrenciden ne beklediğini ve değerlendirme ölçütlerini ortaya çıkarmak için uygun yöntemlerden biri adaylar tarafından hazırlanan dereceli puanlama anahtarının incelenmesidir. Nitel desene sahip olan bu durum çalışmasına Ölçme ve Değerlendirme dersini almış, 24 ilköğretim matematik öğretmen adayı katılmıştır. Amaçlı örnekleme yöntemlerinden ölçüt örnekleme ile belirlenen katılımcıların belirlenmesinde dikkate alınan ölçüt, öğretmen adaylarının özellikle Ölçme ve Değerlendirme dersini almış olmasıdır. E-mail internet mülakatı yoluyla toplanan veriler içerik analizi yöntemi ile analiz edilmiştir. Öğretmen adaylarına rasyonel sayılarla işlemlere yönelik bir problem sunularak, adayların verilen matematik probleminin hangi öğretimsel amaçla öğrencilere sorulduğunu tespit edebilme durumları, değerlendirme için belirledikleri ölçütler ve puanlamaları incelenmiştir. Araştırmanın temel bulguları olarak, ilköğretim matematik öğretmen adaylarının verilen bir matematik problemini değerlendirmede, öğretim programı, öğrencilerin yaş seviyeleri, muhtemel matematiksel bilgileri ve farklılıklarını göz önünde bulundurmadıkları ve işlemsel bilgi ağırlıklı değerlendirme yaptıkları tespit edilmiştir. Bu bağlamda matematik öğretmen adayları tarafından hazırlanan dereceli puanlama anahtarlarının öğrenci öğrenmesini matematiksel ve pedagojik olarak değerlendirmede, matematik öğrenmeyi destekleme ve bu noktada öğrencilere rehberlik etmede yeterli olmadığı söylenebilir.

References

  • American Federation of Teachers, National Council on Measurement in Education, and National Education Association (1990). The standards for Teacher competence in the educational assessment of students. Web: http://files.eric.ed.gov/fulltext/ED323186.pdf
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The Elementary School Journal, 90(4), 449-466. https://doi.org/10.1086/461626
  • Baştürk, S., ve Dönmez, G. (2011). Matematik öğretmen adaylarının pedagojik alan bilgilerinin ölçme ve değerlendirme bilgisi bileşeni bağlamında incelenmesi. Journal of Kirsehir Education Faculty, 12(3).
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., .. Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133-180. https://doi.org/10.3102/0002831209345157
  • Behr, M., Lesh, R., Post, T., and Silver E. (1983). Rational Number Concepts. In R. Lesh and M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes, (pp. 91–125). NewYork: Academic Press.

  • Bicer, A., Capraro, R. M., and Capraro, M. M. (2013). Integrating writing into mathematics classroom to ıncrease students' problem solving skills. International Online Journal of Educational Sciences, 5(2).
  • Birgin, O., ve Gürbüz, R. (2008). Sınıf öğretmeni adaylarının ölçme ve değerlendirme konusundaki bilgi düzeylerinin incelenmesi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 20, 163-179.
  • Black, P. (2001). Formative Assessment and curriculum consequences. Curriculum and assessment. D. Scott (Ed.). International Perspectives on Curriculum Studies, 1. Ablex: London.
  • Brookhart, S. M. (2011). Educational assessment knowledge and skills for teachers. Educational Measurement: Issues and Practice, 30(1), 3-12.
  • Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M. M., and Reys, R. (1980). Results of the second NAEP mathematics assessment: Secondary school. The Mathematics Teacher, 73(5), 329–338.
  • Chan, Z., and Ho, S. (2019). Good and bad practices in rubrics: the perspectives of students and educators. Assessment and Evaluation in Higher Education, 44(4), 533-545.
  • Creswell, J. W. (2003). A framework for design. In C. D. Laughton and V. Novak (Eds.), Research design: Qualitative, Quantitative and Mixed Methods Approaches (pp. 15–26). Lincoln, Nebraska: Sage Publications.
  • Ebert, C. L. (1993). An assessment of prospective secondary teachers’ pedagogical content knowledge about functions and graphs. Paper presented at the annual meeting of the American Educational Research Association, Atlanta, GA, April 12–16, 1993.
  • Danışmaz, Z. K., ve Adıbatmaz, F. B. K. (2020). Çocuk gelişimi alanında dereceli puanlama anahtarı hazırlama: Deneysel bir uygulama. Çocuk ve Gelişim Dergisi, 3(5), 12-28.
  • Danielson, C. (1997a). A Collection of Performance Tasks and Rubrics: Middle School Mathematics. Larchmont, NY: Eye on Education Inc.
  • Danielson, C. (1997b). A Collection of Performance Tasks and Rubrics: Upper Elementary School Mathematics. Larchmont, NY: Eye on Education Inc.
  • Danielson, C. and Marquez, E. (1998). A Collection of Performance Tasks and Rubrics: High School Mathematics. https://scLhaorlcahrwmornkts,.uNmYa:sEs.yeeduo/npEardeu/vcoalt7i/oinssI1n/3c.
  • Fernandez, C., and Cannon, J. (2005). What Japanese and US teachers think about when constructing mathematics lessons: A preliminary investigation. The Elementary School Journal, 105(5), 481-498. https://doi.org/10.1086/431886
  • Goodrich, H. (1997). Understanding rubrics. Educational Leadership 54(4), 14–17.
  • Goodrich, H. A. (2001). The Effects of Instructional Rubrics on Learning to Write. Educational Theory and Practice Faculty Scholarship. http://scholarsarchive.library.albany.edu/etap_fac_scholar/6
  • Goodrich, H. A. (2005). Teaching with rubrics: The good, the bad, and the ugly. College teaching, 53(1), 27-31.
  • Güneş, P. (2020). Teachers’ perceptions of competence related to rubrics and the problems they confront. International Online Journal of Education and Teaching (IOJET), 7(3). 1239-1250. https://iojet.org/index.php/IOJET/article/view/849
  • Güven Akdeniz, D., and Argün, Z. (2018). Learning outcome literacy: The case of five elementary mathematics teachers. Australian Journal of Teacher Education, 43(11), 3. Hiebert, J., Morris, A. K., Berk, D., and Jansen, A. (2007). Preparing teachers to learn from teaching. Journal of Teacher Education, 58(1), 47-61. https://doi.org/10.1177/0022487106295726
  • Işık, C. (2011). İlköğretim matematik öğretmeni adaylarının kesirlerde çarpma ve bölmeye yönelik kurdukları problemlerin kavramsal analizi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41).
  • Kahan, J. A., Cooper, D. A., and Bethea, K. A. (2003). The role of mathematics teachers' content knowledge in their teaching: A framework for research applied to a study of student teachers. Journal of Mathematics Teacher Education, 6(3), 223-252. https://doi.org/10.1023/A:1025175812582
  • Kersting, N. B., Givvin, K. B., Sotelo, F. L., and Stigler, J. W. (2010). Teachers’ analyses of classroom video predict student learning of mathematics: Further explorations of a novel measure of teacher knowledge. Journal of Teacher Education, 61(1-2), 172- 181. https://doi.org/10.1177/0022487109347875
  • Kennedy, D., Hyland, A., and Ryan, N. (2007). Writing and using learning outcomes: A practical guide. University College Cork.
  • Land, T. J., and Drake, C. (2014). Understanding preservice teachers’ curricular knowledge. In Research Trends in Mathematics Teacher Education (pp. 3-22). Cham: Springer https://doi.org/10.1007/978-3-319-02562-9_1
  • Lincoln, Y. S., and Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage. Marsh, C. J. (2009). Key concepts for understanding curriculum. London, Routledge. https://doi.org/10.4324/9780203870457
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates
  • Mapolelo, D. C. (1999). Do pre-service primary teachers who excel in mathematics become good mathematics teachers? Teaching and Teacher Education, 15(6), 715-725. https://doi.org/10.1016/S0742-051X(99)00012-8
  • Mertler, C. A. (2003, October). Pre-service versus in-service teachers’ assessment literacy: Does classroom experience make a difference? Paper presented at the annual meeting of the Mid- Western Educational Research Association, Columbus, Ohio.
  • Mertler, Craig A. (2000) "Designing scoring rubrics for your classroom," Practical Assessment, Research, and Evaluation: Vol. 7 , Article 25.
DOI: https://doi.org/10.7275/gcy8-0w24
Available at: https://scholarworks.umass.edu/pare/vol7/iss1/25
  • Miles, M. B., and Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Milli Eğitim Bakanlığı (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: MEB.
  • Milli Eğitim Bakanlığı (MEB) (2017). Öğretmenlik mesleği genel yeterlikleri. Öğretmen yetiştirme ve geliştirme genel müdürlüğü. Web: http://oygm.meb.gov.tr/meb_iys_dosyalar/2017_12/11115355_YYRETMENLYK_MESLEYY_GENEL_YETERLYKLERY.pdf
  • Moskal, Barbara M. (2000) "Scoring Rubrics: What, When and How?" Practical Assessment, Research, and Evaluation,7 (3). https://doi.org/10.7275/a5vq-7q66
  • National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VR:NCTM.
  • Pugalee, D. K. (2001). Writing, mathematics and metacognition: looking for connections through students’ work in mathematical problem solving. School Science and Mathematics, 101, 236 (Çevrimci) http/epnet.com/ehost, 8 Mart 2002.
  • Pugalee, D. K. (2001). Writing, Mathematics and Metacognition: Looking for Connections Through Students’ Work in Mathematical Problem Solving., School Science and Mathematics, Vol 101, 236 (Çevrimci) http/epnet.com/ehost, 8 Mart 2002.
  • Putra, H. Z. (2018). A Comparative Study of Danish and Indonesian Pre–service Teachers’ Knowledge of Rational Numbers. Doctoral Dissertation, Copenhagen University
  • Reynders, G., Lantz, J., Ruder, S. M., Stanford, C. L., and Cole, R. S. (2020). Rubrics to assess critical thinking and information processing in undergraduate STEM courses. International Journal of STEM Education, 7(1), 1-15.
  • Shabani, E. A., and Panahi, J. (2020). Examining consistency among different rubrics for assessing writing. Language Testing in Asia, 10(1), 1-25.
  • Schoenfeld, A. H. (1985) Mathematical problem-solving (New York, NY, Academic Press).
  • Schoenfeld, A. H., Minstrell, J., and van Zee, E. (1999). The detailed analysis of an established teacher's non-traditional lesson. The Journal of Mathematical Behavior, 18(3), 281- 325. https://doi.org/10.1016/S0732-3123(99)00035-8
  • Schroeder, T. L., and Lester, F. K. (1989). Developing understanding in mathematics via problem solving. New directions for elementary school mathematics, 31, 42.
  • Sefer, G. D. (2006). Matematik dersinde problem çözme becerilerinin dereceli puanlama anahtarı kullanılarak değerlendirilmesi. Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.
  • Siegler, R. S., and Lortie–Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346–351.
  • Simon, M. A. (2006). Key developmental understandings in mathematics: A direction for investigating and establishing learning goals. Mathematical Thinking and Learning, 8(4), 359-371. https://doi.org/10.1207/s15327833mtl0804_1
  • Stake, R. (1995). The art of case study research. Thousand Oaks, CA: SAGE
  • Stiggins, R. (2002). Assessment crisis: The absence of assessment for learning. Phi Delta Kappan, 83(10), 758-65.
  • Şahin, Ö., ve Soylu, Y. (2019). Matematik öğretmeni adaylarının ölçme ve değerlendirme bilgi gelişimleri. Kuramsal Eğitimbilim Dergisi [Journal of Theoretical Educational Science], 12(1), 47-76.
  • Temel, H., ve Eroğlu, A. O. (2014). İlköğretim 8. sınıf öğrencilerinin sayı kavramlarını anlamlandırmaları üzerine bir çalışma. Kastamonu Eğitim Dergisi, 22(3), 1263–1278.
  • Tian, J., and Siegler, R. S. (2018). Which type of rational numbers should students learn first? Edu- cational Psychology Review, 30(2), 351–372.
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research in Mathematics Education, 5–25.
  • Volante, L., and Fazio, X. (2007). Exploring teacher candidates' assessment literacy: Implications for teacher education reform and Professional development. Canadian Journal of Education, 30(3), 749-770.
  • Webb, N. (2002). Assessment literacy in a standards-based urban education setting. Paper presented at the annual meeting of the American Educational Research Association, New Orleans
  • Yin, R. K. (2013). Case study research: Design and methods. SAGE.
There are 59 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Dilşad Güven

Publication Date September 26, 2021
Published in Issue Year 2021Volume: 10 Issue: 3

Cite

APA Güven, D. (2021). Amaç, Ölçüt ve Puanlama: Matematik Öğretmen Adayları Tarafından Oluşturulan Dereceli Puanlama Anahtarlarının İncelenmesi. Cumhuriyet Uluslararası Eğitim Dergisi, 10(3), 974-997. https://doi.org/10.30703/cije.756661

14550                 

© Cumhuriyet University, Faculty of Education