Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Genotoxic Effect of Fluoxetine Hydrochloride in Drosophila melanogaster

Yıl 2024, Cilt: 27 Sayı: 2, 316 - 324, 01.04.2024
https://doi.org/10.18016/ksutarimdoga.vi.1310729

Öz

This study aimed to determine the potential genotoxic effect of fluoxetine hydrochloride (FLX-HCl), an antidepressant commonly used for treating depression, using Somatic Mutation and Recombination Test (SMART). Third-¬instar Drosophila melanogaster larvae transheterozygous for the mutations multiple wing hair (mwh) and flare (flr3) were chronically fed in a medium containing different concentrations of FLX-HCl (0.1, 0.5, 1, and 2 mg/mL) in the experimental group. Distilled water, 0.1 mM ethyl methane sulfonate (EMS), and 2% dimethyl sulfoxide (DMSO) were used in negative, positive, and solvent control groups, respectively. The survival percentages were calculated by determining the number of individuals surviving when the larvae completed their development in the experimental and control groups. In all application groups, the wings of 40 individuals with both normal and serrate wing phenotypes were examined under a microscope, and genetic changes were evaluated by counting the mutant clones in the wings. The data obtained show that 1 and 2 mg/mL concentrations of FLX-HCl caused toxic effects in D. melanogaster individuals. Additionally, FLX-HCl showed a negative genotoxic effect at 0.1 mg/mL concentration, insignificant at 0.5 mg/mL concentration, and positive at 1 and 2 mg/mL concentrations in terms of total mutation evaluation and clone induction frequency in D. melanogaster individuals.

Kaynakça

  • Al-Eitan, L.N., Alzoubi, K.H., Al-Smadi, L.I., & Khabour, O.F. (2020). Vitamin E protects against cisplatin-induced genotoxicity in human lymphocytes. Toxicology In Vitro, 62, 104672. https://doi.org/10.1016/j.tiv.2019.104672.
  • Allgayer, N., de Campos, R. A., Gonzalez, L. P. F., do Amaral Flores, M., Dihl, R. R., & Lehmann, M. (2019). Evaluation of mutagenic activity of platinum complexes in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 133, 110782.
  • Al-Obaidi, I.A., & Al-Shawi, N.N. (2020). Assessment the Genotoxic Potential of Fluoxetine and Amitriptyline at Maximum Therapeutic Doses for Four-Week Treatment in Experimental Male Rats. Iraqi Journal of Pharmaceutical Science, 30 (1), 81-90.
  • Álvarez-González, I., Camacho-Cantera, S., Gómez-González, P., Barrón, M.J.R., Morales- González, J.A., Madrigal-Santillán, E.O., Paniagua-Perez, R., & Madrigal-Bujadar, E. (2021). Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Scientific Reports, 11(1), 6897. https://doi.org/10.1038/s41598-021-86366-0.
  • Anet, A., Olakkaran, S., Purayil, A. K., & Puttaswamygowda, G. H. (2019). Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. Journal of Hazardous Materials, 370, 42-53.
  • Anonymous (2023). Guidelines for the Testing of Chemicals-Section 4: Health Effects. https://www. oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health effects_20745788/dateasc (Cited date: 02.02. 2023).
  • Antonopoulou, M., Dormousoglou, M., Spyrou, A., Dimitroulia, A.A., & Vlastos, D. (2022). An overall assessment of the effects of antidepressant paroxetine on aquatic organisms and human cells. Science of the Total Environment, 852, 158393. https://doi.org/10.1016/ j.scitotenv.2022.158393.
  • Belowski, D., Kowalski, J., Madej, A., & Herman, Z.S. (2004). Influence of antidepressant drugs on macrophage cytotoxic activity in rats. Polish Journal of Pharmacology, 56(6), 837-842.
  • Bendele, R.A., Adams, E.R., Hoffman, W.P., Gries, C.L., & Morton, D.M. (1992). Carcinogenicity Studies of Fluoxetine Hydrochloride in Rats and Mice. Cancer Research, 52(24), 6931-6935.
  • Blahova, J., Doubkova, V., Plhalova, L., Lakdawala, P., Medkova, D., Vecerek, V., Svobodova, Z., & Faggio, C. (2021). Embryotoxicity of Selective Serotonin Reuptake Inhibitors—Comparative Sensitivity of Zebrafish (Danio rerio) and African Clawed Frog (Xenopus laevis) Embryos. Applied Sciences, 11(21):10015.https://doi.org/10.3390/app112110015
  • Byeon, E., Park, J.C., Hagiwara, A., Han, J., & Lee, J.S. (2020). Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. Aquatic Toxicology, 218, 105337. https://doi.org/10.1016/j.aquatox. 2019.105337.
  • Castell, J.V., Gómez-Lechón, M.J., Ponsoda, X., & Bort, R. (1997). In Vitro Investigation of the Molecular Mechanisms of Hepatotoxicity, Archives of Toxicology, Supplement, 19, 313-21. doi: 10.1007/978-3-642-60682-3_29.
  • Cavalcanti, B.C., da Silva, C.R., de Andrade Neto, J.B., Josino, M.A.A., Sá, L.G.D.A.V., de Sousa Silva, A.A., Josino, M.A.A., do Amaral Valente Sá, L.G., de Sousa Silva, A.A., Barreto, F.S., de Oliveira Ferreira, J.S., Iury Ferreira Magalhães, H., Pinto Vieira, I.G., Brito, D.H.A., Pontes Silva Ricardo, N.M., Dias Barroso, F.D., da Costa, E.R.M., Nobre Júnior, H.V., & de Moraes, M.O. (2022). Mutagenic Evaluation of Fluoxetine and Fluoxetine-Galactomannan Complex Through the Analysis of Chromosomal Aberrations in Human Peripheral Leukocytes and Salmonella typhimurium/ Microssome Assay. Journal of Health & Biological Science, 10(1), 1-6. https://doi.org/10.12662/2317-3206jhbs.v10i1.4461.p1-6.2022.
  • Cheki, M., Ghasemi, M.S., Rezaei Rashnoudi, A., & Erfani Majd, N. (2021). Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Drug and Chemical Toxicology, 44(4), 386-393. https://doi.org/10.1080/01480545. 2019.1609024.
  • Cortez, F.S., da Silva Souza, L., Guimarães, L.L., Pusceddu, F.H., Maranho, L.A., Fontes, M.K., Moreno, B.B., Nobre, C.R., de Souza Abessa, D.M., Cesar, A., & Pereira, C.D.S. (2019). Marine contamination and cytogenotoxic effects of fluoxetine in the tropical brown mussel Perna perna. Marine Pollution Bulletin, 141, 366-372. https://doi.org/10.1016/j.marpolbul.2019.02.065.
  • Draz, E., Emara, A.M., Saad, K.M., Badaway, A., El-Nabi, S.E.H., & Abd-Elgelil, H. (2009). Genotoxicity of Some Commonly Used Antidepressants (Fluoxetine, Sertraline and Clomipramine). Mansoura Journal of Forensic Medicine and Clinical Toxicology, XVII (2). https://doi.org/ 10.21608/MJFMCT.2009.61873.
  • Dundaroz, R., Calıskaner, A.Z., Turkbay, T., Gok, F., Dilbaz, N., & Baltaci, V. (1999). Sister-Chromatid Exchange Analysis in Women Treated with Fluoxetine for Depression. SDÜ Tıp Fakültesi Dergisi, 6(4), 15-19.
  • Dusman, E., Almeida, I.V., Mariucci, R.G., Mantovani, M.S., & Vicentini, V.E.P. (2014). Cytotoxicity and mutagenicity of fluoxetine hydrochloride (Prozac), with or without vitamins A and C, in plant and animal model systems. Genetics and Molecular Research, 13(1), 578-589. https://doi.org/10.4238/ 2014. January.28.3.
  • Duval, F., Lebowitz, B.D., & Macher, J.P. (2006). Treatments in depression. Dialogues in Clinical Neuroscience, 8(2), 191-206. https://doi.org/ 10.31887/DCNS.2006.8.2/fduval.
  • Elgebaly, H.A., Mosa, N.M., Allach, M., El-Massry, K.F., El-Ghorab, A.H., Al Hroob, A.M., & Mahmoud, A.M. (2018). Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomedicine & Pharmacotherapy, 98, 446-453. https://doi.org/10.1016/j.biopha.2017.12.101.
  • Ferslew, K.E., Hagardorn, A.N., Harlan, G.C., & McCormick, W.F. (1998). A fatal drug interaction between clozapine and fluoxetine. Journal of Forensic Sciences, 43(5):1082-1085.
  • Frei, H., & Würgler, F.E. (1988). Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative or inconclusive result. Mutation Research, 203(4), 297-308. https://doi.org/10.1016/0165-1161(88) 90019-2.
  • Ganguly, R., Kumar, R., & Pandey, A.K. (2022). Baicalin provides protection against fluoxetine-induced hepatotoxicity by modulation of oxidative stress and inflammation. World Journal of Hepatology, 14(4), 729-743. https://doi.org/10.4254/ wjh.v14.i4.729.
  • Garayo, A., Tordera, R.M., & Azqueta, A. (2022). Study of the effects of plasmatic concentrations of sertraline, duloxetine and fluoxetine on THP-1 cells using the Comet assay. Spanish Journal of Environmental Mutagenesis and Genomics, 26(1), 55.
  • Garza, A.Z., Park, S.B., & Kocz, R. (2019). Drug Elimination. [Updated 2022 Jul 11]. StatPearls Publishing [Internet]. Treasure Island (FL). (Cited date: 20.07.2023).
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B., & Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2), 153-188. https://doi.org/10.1002/em.2860060206.
  • Graf, U., Moraga, A.A., Castro, R., & Carrillo, E.D. (1994). Genotoxicity testing of different types of beverages in the Drosophila wing somatic mutation and recombination test. Food and Chemical Toxicology, 32(5), 423-430. https://doi.org/10.1016/ 0278-6915(94)90040-x.
  • Graf, U., Abraham, S.K., Guzmán-Rincón, J., & Würgler, F.E. (1998). Antigenotoxicity studies in Drosophila melanogaster. Mutation Research, 402 (1-2), 203-209. https://doi.org/10.1016/ s0027-5107 (97) 00298-4.
  • Gunnarsson, L., Jauhiainen, A., Kristiansson, E., Nerman, O., & Larsson, D.G.J. (2008). Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environmental Science & Technology, 42, 5807–5813.
  • Güneş, E. (2016). Besinler ve beslenme çalışmalarında Drosophila. KSÜ Doğa Bilimleri Dergisi, 19(3), 236-243. Harris, J., & Heil, J.S. (2013). Managing depression in patients with advanced heart failure awaiting transplantation. American Journal of Health-System Pharmacy,70(10),867–873. http://dx.doi. org/10.2146/ajhp110738.
  • Jajoo, A., Donlon, C., Shnayder, S., Levin, M., & McVey, M. (2020). Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Scientific Reports, 10(1), 4512.
  • Jiménez, E., Pimentel, E., Cruces, M. P., & Amaya-Chavez, A. (2019). Relationship between viability and genotoxic effect of gamma rays delivered at different dose rates in somatic cells of Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A, 82(13), 741-751.
  • Karimi-Khouzani, O., Heidarian, E., & Amini, S.A. (2017). Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacological Reports, 69(4), 830-835. https://doi.org/10.1016/ j.pharep. 2017.03.011.
  • Kastenbaum, M.A., & Bowman, K.O. (1970). Tables for determining the statistical significance of mutation frequencies. Mutation Research, 9, 527-549.
  • Kaya, B., Marcos, R., Yanikoglu, A., & Creus, A. (2004). Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutation Research, 557(1), 53-62. https://doi.org/10.1016/j.mrgentox.2003.09.010.
  • Khodeer, D.M., Mehanna, E.T., Abushouk, A.I., & Abdel-Daim, M.M. (2020). Protective effects of evening primrose oil against cyclophosphamide-induced biochemical, histopathological, and genotoxic alterations in mice. Pathogens, 9(2),98. https://doi.org/10.3390/pathogens 9020098.
  • Kumar, M., Cyriac, K.S., & Murulidhara, Y.L. (2020). Genotoxicity and its mechanism of antidepressant and antipsychotic drugs: A revıew. Journal of Advenced Scientific Research, 11(3), 79-83.
  • Lemos, N.G., Vicentini, V.E.P., & Mantovani, M.S. (2005). Avaliação do efeito genotóxico do Prozac (fluoxetina), sem e com adição de vitaminas A e C, através do teste do cometa em cultura de células CHO-K1. Semina: Ciências Biológicas e da Saúde, 26(2), 95-100.
  • Lindsley, D.L., & Zimm, G.G. (1992). The genome of D. melanogaster. San Diego (CA): Academic Press. 1133 p.
  • Majeed, Z.R., Ritter, K., Robinson, J., Blümicha, S.L.E., Brailoiu, E., & Cooper, R.L. (2015). New insights into the acute actions from a high dosage of fluoxetine on neuronal and cardiac function: Drosophila, crayfish and rodent models. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 176-177, 52-61. https://doi.org/10.1016/j.cbpc.2015.07. 010.
  • Mishra, M., & Panda, M. (2021). Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radical Research, 55(8), 919-935.
  • Mondal, S., Saha, I., Das, S., Ganguly, A., Das, D., & Tripathi, S.K. (2013). A new logical insight and putative mechanism behind fluoxetine-induced amenorrhea, hyperprolactinemia and galactorrhea in a case series. Therapeutic Advances in Psychopharmacology, 3(6), 322-334. https://doi.org/ 10.1177/2045125313490305.
  • Nagpal, I., & Abraham, S.K. (2019). Coffee mitigates cyclophosphamide-induced genotoxic damage in Drosophila melanogaster germ cells. Drug and Chemical Toxicology, 42(5), 502-508.
  • Neckameyer, W. S., Coleman, C. M., Eadie, S., & Goodwin, S. F. (2007). Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes, Brain and Behavior, 6(8), 756-769.
  • Oakes, K.D., Coors, A., Escher, B.I., Fenner, K., Garric, J., Gust, M., Knacker, T., Küster, A., Kussatz, C., Metcalfe, C.D., Monteiro, S., Moon, T.W., Mennigen, J.A, Parrott, J., Péry, A.R.R., Ramil, M., Roennefahrt, I., Tarazona, J.V., Sánchez- Argüello, P., Ternes, T.A., Trudeau, V.L., Boucard, T., Van Der Kraak, G., & Servos, M.R. (2010). Environmental risk assessment for the serotonin re-uptake inhibitor fluoxetine: Case study using the European risk assessment framework. Integrated Environmental Assessment and Management, 6 (S1), 524-539. https://doi.org/10.1002/ieam. 77.
  • Ofoegbu, P.U., Lourenço, J., Mendo, S., Soares, A.M., & Pestana, J.L. (2019). Effects of low concentrations of psychiatric drugs (carbamazepine and fluoxetine) on the freshwater planarian, Schmidtea mediterranea. Chemosphere, 217, 542-549. https://doi.org/10.1016/ j.chemosphere.2018.10.198.
  • Orozco-Hernández, J.M., Gómez-Oliván, L.M., Elizalde Velázquez, G.A., Rosales Pérez, K.E., Cardoso Vera, J.D., Heredia García, G., Islas Flores, H., Garcia Medina, S., & Galar Martinez, M. (2022). Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. Neurotoxicology, 90, 121-129. https://doi.org/10.1016/j.neuro. 2022.03.007.
  • Panwar, R., Sivakumar, M., Menon, V., & Vairappan, B. (2020). Changes in the levels of comet parameters before and after fluoxetine therapy in major depression patients. Anatomy & Cell Biology, 53(2), 194-200. https://doi.org/10.5115/acb.19.217.
  • Phang-Lyn, S., & Llerena, V.A. (2023). Biochemistry, Biotransformation. StatPearls Publishing [Internet], Treasure Island (FL). (Cited date: 20.07.2023).
  • Power, B. M., Pinder, M., Hackett, L. P., & Ilett, K. F. (1995). Fatal serotonin syndrome following a combined overdose of moclobemide, clomipramine and fluoxetine. Anaesthesia and Intensive Care, 23(4), 499-502.
  • Reiter, L.T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6),1114-1125.
  • Rossi, A., Barraco, A., & Donda, P. (2004). Fluoxetine: a review on evidence based medicine. Annals of General Hospital Psychiatry, 3(2),1-8. https://doi.org/10.1186/1475-2832-3-2.
  • Sallee, F. R., DeVane, C. L., & Ferrell, R. E. (2000). Fluoxetine-related death in a child with cytochrome P-4502D6 genetic deficiency. Journal of Child and Adolescent Psychopharmacology,10(1), 27–34.
  • Schultz, M.M., Painter, M.M., Bartell, S.E., Logue, A., Furlong, E.T., Werner, S.L., & Schoenfuss, H.L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, 104(1-2), 38-47. https://doi.org/10.1016/j.aquatox.2011.03.011.
  • Shorey, S., Ng, E. D., & Wong, C. H. (2022). Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta‐analysis. British Journal of Clinical Psychology, 61(2), 287-305.
  • Silva, B., Goles, N. I., Varas, R., & Campusano, J. M. (2014). Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion. PloS one, 9(2), e89641.
  • Slamon, N.D., Ward, T.H., Butler, J., & Pentreath, V.W. (2001). Assessment of DNA damage in C6 glioma cells after antidepressant treatment using an alkaline comet assay. Archives of Toxicology, 75(4), 243-250. https://doi.org/10.1007/s002040100228.
  • Stahl, S.M. (1998). Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. Journal of Affective Disorders, 51(3), 215–235.
  • Strausfeld, N.J., & Hirth, F. (2013). Homology versus convergence in resolving transphyletic correspondences of brain organization. Brain, Behavior and Evolution, 82(4), 215–219. http://dx.doi.org/10.1159/000356102.
  • Teixeira da Silva, T., Braga Martins, J., Do Socorro de Brito Lopes, M., de Almeida, P. M., Silva Sá, J.L., & Alline Martins, F. (2021). Modulating effect of DL-kavain on the mutagenicity and carcinogenicity induced by doxorubicin in Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A, 84(19), 769-782.
  • Ustuner, D. (2010). Fluoksetin’in Sitogenetik Olarak Analizi. TÜBAV Bilim Dergisi, 3(3), 276-281.
  • Uysal, H., & Celik, H. (2023). ‘Skualen’ Triterpeninin Somatik Mutasyonlar Üzerine Etkisinin Drosophila melanogaster’de In vivo Kanat Benek Testi ile Araştırılması. KSÜ Tarım ve Doğa Dergisi, 26(3), 477-486.
  • Véras, J. H., do Vale, C. R., da Silva Lima, D. C., Dos Anjos, M. M., Bernardes, A., de Moraes Filho, A. V., e Silva C.R., de Oliveira G.R., Pérez., C.N., & Chen-Chen, L. (2022). Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug and Chemical Toxicology, 45(2), 775-784.
  • Vijitkul, P., Kongsema, M., Toommakorn, T., & Bullangpoti, V. (2022). Investigation of genotoxicity, mutagenicity, and cytotoxicity in erythrocytes of Nile tilapia (Oreochromis niloticus) after fluoxetine exposure. Toxicology Reports, 9, 588-596. https://doi.org/10.1016/j. toxrep. 2022.03.031.
  • Wu, M. L., & Deng, J. F. (2011). Fatal serotonin toxicity caused by moclobemide and fluoxetine overdose. Chang Gung Medical Journal, 34(6), 644-649.
  • Yuzbasioglu, D., Avuloglu Yilmaz, E., & Unal, F. (2016). Antidepresan İlaçlar ve Genotoksisite. TÜBAV Bilim, 9(1), 17-28.
  • Zlatković, J., Todorović, N., Tomanović, N., Bošković, M., Djordjević, S., Lazarević-Pašti, T., Bernardi, R.E., Djurdjević, A., & Filipović, D. (2014). Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. European Journal of Pharmaceutical Science, 59, 20-30. https://doi.org/10.1016/j.ejps. 2014.04.010.

Fluoksetin Hidroklorür’ün Genotoksik Etkisinin Drosophila melanogaster’de Araştırılması

Yıl 2024, Cilt: 27 Sayı: 2, 316 - 324, 01.04.2024
https://doi.org/10.18016/ksutarimdoga.vi.1310729

Öz

Bu çalışmada depresyon tedavisinde yaygın olarak kullanılan bir antidepresan olan fluoksetin hidroklorürün (FLX-HCl) potansiyel genotoksik etkisinin Somatik Mutasyon ve Rekombinasyon Testi (SMART) kullanılarak belirlenmesi amaçlanmıştır. Deney grubunda çoklu kanat kılı (mwh) ve flare (flr3) mutasyonları için transheterozigot olan üçüncü dönem Drosophila melanogaster larvaları, farklı konsantrasyonlarda FLX-HCl (0.1, 0.5, 1 ve 2 mg/mL) içeren ortamda kronik olarak beslenmiştir. Distile su, 0.1 mM etil metan sülfonat (EMS) ve % 2 dimetil sülfoksit (DMSO) sırasıyla negatif, pozitif ve çözücü kontrol gruplarında kullanılmıştır. Deney ve kontrol gruplarında larvalar gelişimini tamamladığında hayatta kalan birey sayıları belirlenerek yaşama yüzdeleri hesaplanmıştır. Tüm uygulama gruplarında hem normal hem de serrat kanat fenotipine sahip 40 bireyin kanatları mikroskop altında incelenmiş ve kanatlardaki mutant klonlar sayılarak genetik değişimler değerlendirilmiştir. Elde edilen veriler, FLX-HCl'nin 1 ve 2 mg/mL konsantrasyonlarının D. melanogaster bireyleri üzerinde toksik etkiye neden olduğunu göstermiştir. Ayrıca FLX-HCl, D. melanogaster bireylerinde toplam mutasyon değerlendirmesi ve klon induksiyon frekansı bakımından 0.1 mg/mL konsantrasyonunda negatif, 0.5 mg/mL konsantrasyonunda önemsiz, 1 ve 2 mg/mL konsantrasyonlarında pozitif genotoksik etki göstermiştir.

Kaynakça

  • Al-Eitan, L.N., Alzoubi, K.H., Al-Smadi, L.I., & Khabour, O.F. (2020). Vitamin E protects against cisplatin-induced genotoxicity in human lymphocytes. Toxicology In Vitro, 62, 104672. https://doi.org/10.1016/j.tiv.2019.104672.
  • Allgayer, N., de Campos, R. A., Gonzalez, L. P. F., do Amaral Flores, M., Dihl, R. R., & Lehmann, M. (2019). Evaluation of mutagenic activity of platinum complexes in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 133, 110782.
  • Al-Obaidi, I.A., & Al-Shawi, N.N. (2020). Assessment the Genotoxic Potential of Fluoxetine and Amitriptyline at Maximum Therapeutic Doses for Four-Week Treatment in Experimental Male Rats. Iraqi Journal of Pharmaceutical Science, 30 (1), 81-90.
  • Álvarez-González, I., Camacho-Cantera, S., Gómez-González, P., Barrón, M.J.R., Morales- González, J.A., Madrigal-Santillán, E.O., Paniagua-Perez, R., & Madrigal-Bujadar, E. (2021). Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Scientific Reports, 11(1), 6897. https://doi.org/10.1038/s41598-021-86366-0.
  • Anet, A., Olakkaran, S., Purayil, A. K., & Puttaswamygowda, G. H. (2019). Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. Journal of Hazardous Materials, 370, 42-53.
  • Anonymous (2023). Guidelines for the Testing of Chemicals-Section 4: Health Effects. https://www. oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health effects_20745788/dateasc (Cited date: 02.02. 2023).
  • Antonopoulou, M., Dormousoglou, M., Spyrou, A., Dimitroulia, A.A., & Vlastos, D. (2022). An overall assessment of the effects of antidepressant paroxetine on aquatic organisms and human cells. Science of the Total Environment, 852, 158393. https://doi.org/10.1016/ j.scitotenv.2022.158393.
  • Belowski, D., Kowalski, J., Madej, A., & Herman, Z.S. (2004). Influence of antidepressant drugs on macrophage cytotoxic activity in rats. Polish Journal of Pharmacology, 56(6), 837-842.
  • Bendele, R.A., Adams, E.R., Hoffman, W.P., Gries, C.L., & Morton, D.M. (1992). Carcinogenicity Studies of Fluoxetine Hydrochloride in Rats and Mice. Cancer Research, 52(24), 6931-6935.
  • Blahova, J., Doubkova, V., Plhalova, L., Lakdawala, P., Medkova, D., Vecerek, V., Svobodova, Z., & Faggio, C. (2021). Embryotoxicity of Selective Serotonin Reuptake Inhibitors—Comparative Sensitivity of Zebrafish (Danio rerio) and African Clawed Frog (Xenopus laevis) Embryos. Applied Sciences, 11(21):10015.https://doi.org/10.3390/app112110015
  • Byeon, E., Park, J.C., Hagiwara, A., Han, J., & Lee, J.S. (2020). Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. Aquatic Toxicology, 218, 105337. https://doi.org/10.1016/j.aquatox. 2019.105337.
  • Castell, J.V., Gómez-Lechón, M.J., Ponsoda, X., & Bort, R. (1997). In Vitro Investigation of the Molecular Mechanisms of Hepatotoxicity, Archives of Toxicology, Supplement, 19, 313-21. doi: 10.1007/978-3-642-60682-3_29.
  • Cavalcanti, B.C., da Silva, C.R., de Andrade Neto, J.B., Josino, M.A.A., Sá, L.G.D.A.V., de Sousa Silva, A.A., Josino, M.A.A., do Amaral Valente Sá, L.G., de Sousa Silva, A.A., Barreto, F.S., de Oliveira Ferreira, J.S., Iury Ferreira Magalhães, H., Pinto Vieira, I.G., Brito, D.H.A., Pontes Silva Ricardo, N.M., Dias Barroso, F.D., da Costa, E.R.M., Nobre Júnior, H.V., & de Moraes, M.O. (2022). Mutagenic Evaluation of Fluoxetine and Fluoxetine-Galactomannan Complex Through the Analysis of Chromosomal Aberrations in Human Peripheral Leukocytes and Salmonella typhimurium/ Microssome Assay. Journal of Health & Biological Science, 10(1), 1-6. https://doi.org/10.12662/2317-3206jhbs.v10i1.4461.p1-6.2022.
  • Cheki, M., Ghasemi, M.S., Rezaei Rashnoudi, A., & Erfani Majd, N. (2021). Metformin attenuates cisplatin-induced genotoxicity and apoptosis in rat bone marrow cells. Drug and Chemical Toxicology, 44(4), 386-393. https://doi.org/10.1080/01480545. 2019.1609024.
  • Cortez, F.S., da Silva Souza, L., Guimarães, L.L., Pusceddu, F.H., Maranho, L.A., Fontes, M.K., Moreno, B.B., Nobre, C.R., de Souza Abessa, D.M., Cesar, A., & Pereira, C.D.S. (2019). Marine contamination and cytogenotoxic effects of fluoxetine in the tropical brown mussel Perna perna. Marine Pollution Bulletin, 141, 366-372. https://doi.org/10.1016/j.marpolbul.2019.02.065.
  • Draz, E., Emara, A.M., Saad, K.M., Badaway, A., El-Nabi, S.E.H., & Abd-Elgelil, H. (2009). Genotoxicity of Some Commonly Used Antidepressants (Fluoxetine, Sertraline and Clomipramine). Mansoura Journal of Forensic Medicine and Clinical Toxicology, XVII (2). https://doi.org/ 10.21608/MJFMCT.2009.61873.
  • Dundaroz, R., Calıskaner, A.Z., Turkbay, T., Gok, F., Dilbaz, N., & Baltaci, V. (1999). Sister-Chromatid Exchange Analysis in Women Treated with Fluoxetine for Depression. SDÜ Tıp Fakültesi Dergisi, 6(4), 15-19.
  • Dusman, E., Almeida, I.V., Mariucci, R.G., Mantovani, M.S., & Vicentini, V.E.P. (2014). Cytotoxicity and mutagenicity of fluoxetine hydrochloride (Prozac), with or without vitamins A and C, in plant and animal model systems. Genetics and Molecular Research, 13(1), 578-589. https://doi.org/10.4238/ 2014. January.28.3.
  • Duval, F., Lebowitz, B.D., & Macher, J.P. (2006). Treatments in depression. Dialogues in Clinical Neuroscience, 8(2), 191-206. https://doi.org/ 10.31887/DCNS.2006.8.2/fduval.
  • Elgebaly, H.A., Mosa, N.M., Allach, M., El-Massry, K.F., El-Ghorab, A.H., Al Hroob, A.M., & Mahmoud, A.M. (2018). Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomedicine & Pharmacotherapy, 98, 446-453. https://doi.org/10.1016/j.biopha.2017.12.101.
  • Ferslew, K.E., Hagardorn, A.N., Harlan, G.C., & McCormick, W.F. (1998). A fatal drug interaction between clozapine and fluoxetine. Journal of Forensic Sciences, 43(5):1082-1085.
  • Frei, H., & Würgler, F.E. (1988). Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative or inconclusive result. Mutation Research, 203(4), 297-308. https://doi.org/10.1016/0165-1161(88) 90019-2.
  • Ganguly, R., Kumar, R., & Pandey, A.K. (2022). Baicalin provides protection against fluoxetine-induced hepatotoxicity by modulation of oxidative stress and inflammation. World Journal of Hepatology, 14(4), 729-743. https://doi.org/10.4254/ wjh.v14.i4.729.
  • Garayo, A., Tordera, R.M., & Azqueta, A. (2022). Study of the effects of plasmatic concentrations of sertraline, duloxetine and fluoxetine on THP-1 cells using the Comet assay. Spanish Journal of Environmental Mutagenesis and Genomics, 26(1), 55.
  • Garza, A.Z., Park, S.B., & Kocz, R. (2019). Drug Elimination. [Updated 2022 Jul 11]. StatPearls Publishing [Internet]. Treasure Island (FL). (Cited date: 20.07.2023).
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C.B., & Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2), 153-188. https://doi.org/10.1002/em.2860060206.
  • Graf, U., Moraga, A.A., Castro, R., & Carrillo, E.D. (1994). Genotoxicity testing of different types of beverages in the Drosophila wing somatic mutation and recombination test. Food and Chemical Toxicology, 32(5), 423-430. https://doi.org/10.1016/ 0278-6915(94)90040-x.
  • Graf, U., Abraham, S.K., Guzmán-Rincón, J., & Würgler, F.E. (1998). Antigenotoxicity studies in Drosophila melanogaster. Mutation Research, 402 (1-2), 203-209. https://doi.org/10.1016/ s0027-5107 (97) 00298-4.
  • Gunnarsson, L., Jauhiainen, A., Kristiansson, E., Nerman, O., & Larsson, D.G.J. (2008). Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environmental Science & Technology, 42, 5807–5813.
  • Güneş, E. (2016). Besinler ve beslenme çalışmalarında Drosophila. KSÜ Doğa Bilimleri Dergisi, 19(3), 236-243. Harris, J., & Heil, J.S. (2013). Managing depression in patients with advanced heart failure awaiting transplantation. American Journal of Health-System Pharmacy,70(10),867–873. http://dx.doi. org/10.2146/ajhp110738.
  • Jajoo, A., Donlon, C., Shnayder, S., Levin, M., & McVey, M. (2020). Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Scientific Reports, 10(1), 4512.
  • Jiménez, E., Pimentel, E., Cruces, M. P., & Amaya-Chavez, A. (2019). Relationship between viability and genotoxic effect of gamma rays delivered at different dose rates in somatic cells of Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A, 82(13), 741-751.
  • Karimi-Khouzani, O., Heidarian, E., & Amini, S.A. (2017). Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacological Reports, 69(4), 830-835. https://doi.org/10.1016/ j.pharep. 2017.03.011.
  • Kastenbaum, M.A., & Bowman, K.O. (1970). Tables for determining the statistical significance of mutation frequencies. Mutation Research, 9, 527-549.
  • Kaya, B., Marcos, R., Yanikoglu, A., & Creus, A. (2004). Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutation Research, 557(1), 53-62. https://doi.org/10.1016/j.mrgentox.2003.09.010.
  • Khodeer, D.M., Mehanna, E.T., Abushouk, A.I., & Abdel-Daim, M.M. (2020). Protective effects of evening primrose oil against cyclophosphamide-induced biochemical, histopathological, and genotoxic alterations in mice. Pathogens, 9(2),98. https://doi.org/10.3390/pathogens 9020098.
  • Kumar, M., Cyriac, K.S., & Murulidhara, Y.L. (2020). Genotoxicity and its mechanism of antidepressant and antipsychotic drugs: A revıew. Journal of Advenced Scientific Research, 11(3), 79-83.
  • Lemos, N.G., Vicentini, V.E.P., & Mantovani, M.S. (2005). Avaliação do efeito genotóxico do Prozac (fluoxetina), sem e com adição de vitaminas A e C, através do teste do cometa em cultura de células CHO-K1. Semina: Ciências Biológicas e da Saúde, 26(2), 95-100.
  • Lindsley, D.L., & Zimm, G.G. (1992). The genome of D. melanogaster. San Diego (CA): Academic Press. 1133 p.
  • Majeed, Z.R., Ritter, K., Robinson, J., Blümicha, S.L.E., Brailoiu, E., & Cooper, R.L. (2015). New insights into the acute actions from a high dosage of fluoxetine on neuronal and cardiac function: Drosophila, crayfish and rodent models. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 176-177, 52-61. https://doi.org/10.1016/j.cbpc.2015.07. 010.
  • Mishra, M., & Panda, M. (2021). Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radical Research, 55(8), 919-935.
  • Mondal, S., Saha, I., Das, S., Ganguly, A., Das, D., & Tripathi, S.K. (2013). A new logical insight and putative mechanism behind fluoxetine-induced amenorrhea, hyperprolactinemia and galactorrhea in a case series. Therapeutic Advances in Psychopharmacology, 3(6), 322-334. https://doi.org/ 10.1177/2045125313490305.
  • Nagpal, I., & Abraham, S.K. (2019). Coffee mitigates cyclophosphamide-induced genotoxic damage in Drosophila melanogaster germ cells. Drug and Chemical Toxicology, 42(5), 502-508.
  • Neckameyer, W. S., Coleman, C. M., Eadie, S., & Goodwin, S. F. (2007). Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes, Brain and Behavior, 6(8), 756-769.
  • Oakes, K.D., Coors, A., Escher, B.I., Fenner, K., Garric, J., Gust, M., Knacker, T., Küster, A., Kussatz, C., Metcalfe, C.D., Monteiro, S., Moon, T.W., Mennigen, J.A, Parrott, J., Péry, A.R.R., Ramil, M., Roennefahrt, I., Tarazona, J.V., Sánchez- Argüello, P., Ternes, T.A., Trudeau, V.L., Boucard, T., Van Der Kraak, G., & Servos, M.R. (2010). Environmental risk assessment for the serotonin re-uptake inhibitor fluoxetine: Case study using the European risk assessment framework. Integrated Environmental Assessment and Management, 6 (S1), 524-539. https://doi.org/10.1002/ieam. 77.
  • Ofoegbu, P.U., Lourenço, J., Mendo, S., Soares, A.M., & Pestana, J.L. (2019). Effects of low concentrations of psychiatric drugs (carbamazepine and fluoxetine) on the freshwater planarian, Schmidtea mediterranea. Chemosphere, 217, 542-549. https://doi.org/10.1016/ j.chemosphere.2018.10.198.
  • Orozco-Hernández, J.M., Gómez-Oliván, L.M., Elizalde Velázquez, G.A., Rosales Pérez, K.E., Cardoso Vera, J.D., Heredia García, G., Islas Flores, H., Garcia Medina, S., & Galar Martinez, M. (2022). Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. Neurotoxicology, 90, 121-129. https://doi.org/10.1016/j.neuro. 2022.03.007.
  • Panwar, R., Sivakumar, M., Menon, V., & Vairappan, B. (2020). Changes in the levels of comet parameters before and after fluoxetine therapy in major depression patients. Anatomy & Cell Biology, 53(2), 194-200. https://doi.org/10.5115/acb.19.217.
  • Phang-Lyn, S., & Llerena, V.A. (2023). Biochemistry, Biotransformation. StatPearls Publishing [Internet], Treasure Island (FL). (Cited date: 20.07.2023).
  • Power, B. M., Pinder, M., Hackett, L. P., & Ilett, K. F. (1995). Fatal serotonin syndrome following a combined overdose of moclobemide, clomipramine and fluoxetine. Anaesthesia and Intensive Care, 23(4), 499-502.
  • Reiter, L.T., Potocki, L., Chien, S., Gribskov, M., & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6),1114-1125.
  • Rossi, A., Barraco, A., & Donda, P. (2004). Fluoxetine: a review on evidence based medicine. Annals of General Hospital Psychiatry, 3(2),1-8. https://doi.org/10.1186/1475-2832-3-2.
  • Sallee, F. R., DeVane, C. L., & Ferrell, R. E. (2000). Fluoxetine-related death in a child with cytochrome P-4502D6 genetic deficiency. Journal of Child and Adolescent Psychopharmacology,10(1), 27–34.
  • Schultz, M.M., Painter, M.M., Bartell, S.E., Logue, A., Furlong, E.T., Werner, S.L., & Schoenfuss, H.L. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, 104(1-2), 38-47. https://doi.org/10.1016/j.aquatox.2011.03.011.
  • Shorey, S., Ng, E. D., & Wong, C. H. (2022). Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta‐analysis. British Journal of Clinical Psychology, 61(2), 287-305.
  • Silva, B., Goles, N. I., Varas, R., & Campusano, J. M. (2014). Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion. PloS one, 9(2), e89641.
  • Slamon, N.D., Ward, T.H., Butler, J., & Pentreath, V.W. (2001). Assessment of DNA damage in C6 glioma cells after antidepressant treatment using an alkaline comet assay. Archives of Toxicology, 75(4), 243-250. https://doi.org/10.1007/s002040100228.
  • Stahl, S.M. (1998). Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. Journal of Affective Disorders, 51(3), 215–235.
  • Strausfeld, N.J., & Hirth, F. (2013). Homology versus convergence in resolving transphyletic correspondences of brain organization. Brain, Behavior and Evolution, 82(4), 215–219. http://dx.doi.org/10.1159/000356102.
  • Teixeira da Silva, T., Braga Martins, J., Do Socorro de Brito Lopes, M., de Almeida, P. M., Silva Sá, J.L., & Alline Martins, F. (2021). Modulating effect of DL-kavain on the mutagenicity and carcinogenicity induced by doxorubicin in Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A, 84(19), 769-782.
  • Ustuner, D. (2010). Fluoksetin’in Sitogenetik Olarak Analizi. TÜBAV Bilim Dergisi, 3(3), 276-281.
  • Uysal, H., & Celik, H. (2023). ‘Skualen’ Triterpeninin Somatik Mutasyonlar Üzerine Etkisinin Drosophila melanogaster’de In vivo Kanat Benek Testi ile Araştırılması. KSÜ Tarım ve Doğa Dergisi, 26(3), 477-486.
  • Véras, J. H., do Vale, C. R., da Silva Lima, D. C., Dos Anjos, M. M., Bernardes, A., de Moraes Filho, A. V., e Silva C.R., de Oliveira G.R., Pérez., C.N., & Chen-Chen, L. (2022). Modulating effect of a hydroxychalcone and a novel coumarin–chalcone hybrid against mitomycin-induced genotoxicity in somatic cells of Drosophila melanogaster. Drug and Chemical Toxicology, 45(2), 775-784.
  • Vijitkul, P., Kongsema, M., Toommakorn, T., & Bullangpoti, V. (2022). Investigation of genotoxicity, mutagenicity, and cytotoxicity in erythrocytes of Nile tilapia (Oreochromis niloticus) after fluoxetine exposure. Toxicology Reports, 9, 588-596. https://doi.org/10.1016/j. toxrep. 2022.03.031.
  • Wu, M. L., & Deng, J. F. (2011). Fatal serotonin toxicity caused by moclobemide and fluoxetine overdose. Chang Gung Medical Journal, 34(6), 644-649.
  • Yuzbasioglu, D., Avuloglu Yilmaz, E., & Unal, F. (2016). Antidepresan İlaçlar ve Genotoksisite. TÜBAV Bilim, 9(1), 17-28.
  • Zlatković, J., Todorović, N., Tomanović, N., Bošković, M., Djordjević, S., Lazarević-Pašti, T., Bernardi, R.E., Djurdjević, A., & Filipović, D. (2014). Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. European Journal of Pharmaceutical Science, 59, 20-30. https://doi.org/10.1016/j.ejps. 2014.04.010.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvan Bilimi (Diğer)
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Selda Öz 0000-0003-1883-3441

Zeynep Nur Sarıkaya 0009-0003-9343-8887

Özüm Larçın 0009-0000-3232-9140

Rabia Sarıkaya 0000-0001-9247-8973

Erken Görünüm Tarihi 21 Ocak 2024
Yayımlanma Tarihi 1 Nisan 2024
Gönderilme Tarihi 7 Haziran 2023
Kabul Tarihi 27 Eylül 2023
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 2

Kaynak Göster

APA Öz, S., Sarıkaya, Z. N., Larçın, Ö., Sarıkaya, R. (2024). Investigation of the Genotoxic Effect of Fluoxetine Hydrochloride in Drosophila melanogaster. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(2), 316-324. https://doi.org/10.18016/ksutarimdoga.vi.1310729

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149