Araştırma Makalesi
BibTex RIS Kaynak Göster

Rotational Self-Shrinkers in Euclidean Spaces

Yıl 2024, Cilt: 17 Sayı: 1, 34 - 43, 23.04.2024
https://doi.org/10.36890/iejg.1330887

Öz

The rotational embedded submanifold of $\mathbb{E}^{n+d}$ first studied by
N. Kuiper. The special examples of this type are generalized Beltrami
submanifolds and toroidals submanifold. The second named authour and at. all
recently have considered $3-$dimensional rotational embedded submanifolds in
$\mathbb{E}^{5}$. They gave some basic curvature properties of this type of
submaifolds. Self-similar flows emerge as a special solution to the mean
curvature flow that preserves the shape of the evolving submanifold. In
this article we consider self-similar submanifolds in Euclidean spaces. We
obtained some results related with self-shrinking rotational submanifolds in
Euclidean $5-$space $\mathbb{E}^{5}$. Moreover, we give the necessary and
sufficient conditions for these type of submanifolds to be homothetic
solitons for their mean curvature flows.

Kaynakça

  • [1] Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differential Geom. 23, 175-196 (1986).
  • [2] Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16, 443-459 (2003).
  • [3] Arezzo, C., Sun, J.: Self-shrinkers for the mean curvature flow in arbitrary codimension. Math. Z. 274, 993-1027 (2013).
  • [4] Arslan, K., Bayram (Kılıç), B., Bulca, B., Öztürk, G.: Rotation submanifolds in Euclidean spaces. Int. J. Geom. Meth. Mod. Phy. 16, 1-12 (2019).
  • [5] Cao, H.D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. 46, 879-889 (2013).
  • [6] Castro I., Lerma A.M.: The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow. Int. Math. Res. Not. 16, 1515-1152 (2014).
  • [7] Castro, I., Lerma A.M.: Homothetic solitons for the inverse mean curvature flow. Results in Math. 71, 1109-1125 (2017).
  • [8] Chen, B. Y.: Geometry of Submanifolds. Dekker, New York (1973).
  • [9] Chen, B. Y.: Topics in differential geometry associated with position vector fields on Euclidean submanifolds. Arab J. Math. Sci. 23, 1-17 (2017).
  • [10] Chen, B.Y., Deshmukd, S.: Classification of Ricci solitons on Euclidean hypersurfaces. Int. J. Math. 25, 1-22 (2014).
  • [11] Cheng, Q.M., Li, Z., Wei, G.: Complete self-shrinkers with constant norm of the second fundamental form. Mathematische Zeitschrift. 300,995-1018 (2022).
  • [12] Cheng, Q.M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. 52, 497-506 (2015).
  • [13] Cooper, A.A.: Mean Curvature Flow in Higher Codimension. Ph.D. Thesis. Michigan State University, Graduate Program in Mathematics, USA.(2011).
  • [14] Drugan, G., Lee, H., Nguyen, X.H.: A survey of closed self-shrinkers with symmetry. Results in Math. 32, 73-32 (2018).
  • [15] Drugan, G., Lee, H., Wheeler, G.: Solitons for the inverse mean curvature flow. Pasific J. Math. 284, 309-326 (2016).
  • [16] Ecker, K.: Regularity theory for mean curvature flow. Birkhäuser Inc., Boston, (2004).
  • [17] Ecker, K., Huisken, G.: Mean curvature evolution of entire gaphs. Annals of Math. 130, 453-471 (1989).
  • [18] Etemoğlu, E., Arslan, K., Bulca, B.: Self similar surfaces in Euclidean spaces. Selçuk J. Appl. Math. 14, 71-81 (2013).
  • [19] Gorkavyy G., Nevmerzhytska, O.: Pseudo-spherical submanifolds with degenerate Bianchi transformation. Results. Math. 60, 103-116 (2011).
  • [20] Guan Z., Li, F.: Self-shrinker type submanifolds in the Euclidean space. Bul. Iranian Math. Soc. 47, 101-110 (2021).
  • [21] Guo, S. H.: Self shrinkers and singularity models of the main curvature flow. Ph.D. Thesis, The State University of New Jersey, Graduate Program in Mathematics, USA, (2017).
  • [22] Halldorsson, P.H.: Self-similar solutions to the mean curvature flow in Euclidean and Minkowski space. Ph.D. Thesis. Masschusetts Institute of Technology, Department of Mathematics, USA, (2013).
  • [23] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom. 59, 353-437 (2001).
  • [24] Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. J. Differential Geom. 80, 433-451 (2008).
  • [25] Hussey, C.: Classification and analysis of low index mean curvature flow self-shrinkers. Ph.D. Thesis. The Johns Hopkins University,Department of Mathematics, USA, (2012).
  • [26] Joyse, D., Lee, Y., Tsui M.P.: Self-similar solutions and translating solutions for Lagrangian mean curvature flow. J. Differential Geom. 84, 127-161 (2010).
  • [27] Kuiper, N.H.: Minimal total absolute curvature for immersions. Invent. Math. 10, 209-238 (1970).
  • [28] Montegazza, C.: Lecture notes on mean curvature flow, Birkhauser (2011).
  • [29] Peng, Y.: Complete self-shrinkers of mean curvature flow. Ph.D. Thesis. Saga University, Graduate School of Science and Engineering, Department of Science and Advanced Technology, Japan (2013).
  • [30] Schulze, F.: Introduction to mean curvature flow. Lecture Notes, University College London, (2017).
  • [31] Sigal, I. M.: Lectures on mean curvature flow and stability. Lecture Notes, Dept. of Mathematics, Univ. of Toronto, (2014).
  • [32] Smoczyk, K.: Mean curvature flow in higher codimension: Introduction and survey. Global Differential Geometry, Springer Verlag, Berlin,Heidelberg, (2012).
Yıl 2024, Cilt: 17 Sayı: 1, 34 - 43, 23.04.2024
https://doi.org/10.36890/iejg.1330887

Öz

Kaynakça

  • [1] Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differential Geom. 23, 175-196 (1986).
  • [2] Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16, 443-459 (2003).
  • [3] Arezzo, C., Sun, J.: Self-shrinkers for the mean curvature flow in arbitrary codimension. Math. Z. 274, 993-1027 (2013).
  • [4] Arslan, K., Bayram (Kılıç), B., Bulca, B., Öztürk, G.: Rotation submanifolds in Euclidean spaces. Int. J. Geom. Meth. Mod. Phy. 16, 1-12 (2019).
  • [5] Cao, H.D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. 46, 879-889 (2013).
  • [6] Castro I., Lerma A.M.: The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow. Int. Math. Res. Not. 16, 1515-1152 (2014).
  • [7] Castro, I., Lerma A.M.: Homothetic solitons for the inverse mean curvature flow. Results in Math. 71, 1109-1125 (2017).
  • [8] Chen, B. Y.: Geometry of Submanifolds. Dekker, New York (1973).
  • [9] Chen, B. Y.: Topics in differential geometry associated with position vector fields on Euclidean submanifolds. Arab J. Math. Sci. 23, 1-17 (2017).
  • [10] Chen, B.Y., Deshmukd, S.: Classification of Ricci solitons on Euclidean hypersurfaces. Int. J. Math. 25, 1-22 (2014).
  • [11] Cheng, Q.M., Li, Z., Wei, G.: Complete self-shrinkers with constant norm of the second fundamental form. Mathematische Zeitschrift. 300,995-1018 (2022).
  • [12] Cheng, Q.M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. 52, 497-506 (2015).
  • [13] Cooper, A.A.: Mean Curvature Flow in Higher Codimension. Ph.D. Thesis. Michigan State University, Graduate Program in Mathematics, USA.(2011).
  • [14] Drugan, G., Lee, H., Nguyen, X.H.: A survey of closed self-shrinkers with symmetry. Results in Math. 32, 73-32 (2018).
  • [15] Drugan, G., Lee, H., Wheeler, G.: Solitons for the inverse mean curvature flow. Pasific J. Math. 284, 309-326 (2016).
  • [16] Ecker, K.: Regularity theory for mean curvature flow. Birkhäuser Inc., Boston, (2004).
  • [17] Ecker, K., Huisken, G.: Mean curvature evolution of entire gaphs. Annals of Math. 130, 453-471 (1989).
  • [18] Etemoğlu, E., Arslan, K., Bulca, B.: Self similar surfaces in Euclidean spaces. Selçuk J. Appl. Math. 14, 71-81 (2013).
  • [19] Gorkavyy G., Nevmerzhytska, O.: Pseudo-spherical submanifolds with degenerate Bianchi transformation. Results. Math. 60, 103-116 (2011).
  • [20] Guan Z., Li, F.: Self-shrinker type submanifolds in the Euclidean space. Bul. Iranian Math. Soc. 47, 101-110 (2021).
  • [21] Guo, S. H.: Self shrinkers and singularity models of the main curvature flow. Ph.D. Thesis, The State University of New Jersey, Graduate Program in Mathematics, USA, (2017).
  • [22] Halldorsson, P.H.: Self-similar solutions to the mean curvature flow in Euclidean and Minkowski space. Ph.D. Thesis. Masschusetts Institute of Technology, Department of Mathematics, USA, (2013).
  • [23] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom. 59, 353-437 (2001).
  • [24] Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. J. Differential Geom. 80, 433-451 (2008).
  • [25] Hussey, C.: Classification and analysis of low index mean curvature flow self-shrinkers. Ph.D. Thesis. The Johns Hopkins University,Department of Mathematics, USA, (2012).
  • [26] Joyse, D., Lee, Y., Tsui M.P.: Self-similar solutions and translating solutions for Lagrangian mean curvature flow. J. Differential Geom. 84, 127-161 (2010).
  • [27] Kuiper, N.H.: Minimal total absolute curvature for immersions. Invent. Math. 10, 209-238 (1970).
  • [28] Montegazza, C.: Lecture notes on mean curvature flow, Birkhauser (2011).
  • [29] Peng, Y.: Complete self-shrinkers of mean curvature flow. Ph.D. Thesis. Saga University, Graduate School of Science and Engineering, Department of Science and Advanced Technology, Japan (2013).
  • [30] Schulze, F.: Introduction to mean curvature flow. Lecture Notes, University College London, (2017).
  • [31] Sigal, I. M.: Lectures on mean curvature flow and stability. Lecture Notes, Dept. of Mathematics, Univ. of Toronto, (2014).
  • [32] Smoczyk, K.: Mean curvature flow in higher codimension: Introduction and survey. Global Differential Geometry, Springer Verlag, Berlin,Heidelberg, (2012).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Kadri Arslan 0000-0002-1440-7050

Yılmaz Aydın 0000-0003-4292-5880

Betül Bulca Sokur 0000-0001-5861-0184

Erken Görünüm Tarihi 5 Nisan 2024
Yayımlanma Tarihi 23 Nisan 2024
Kabul Tarihi 24 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

APA Arslan, K., Aydın, Y., & Bulca Sokur, B. (2024). Rotational Self-Shrinkers in Euclidean Spaces. International Electronic Journal of Geometry, 17(1), 34-43. https://doi.org/10.36890/iejg.1330887
AMA Arslan K, Aydın Y, Bulca Sokur B. Rotational Self-Shrinkers in Euclidean Spaces. Int. Electron. J. Geom. Nisan 2024;17(1):34-43. doi:10.36890/iejg.1330887
Chicago Arslan, Kadri, Yılmaz Aydın, ve Betül Bulca Sokur. “Rotational Self-Shrinkers in Euclidean Spaces”. International Electronic Journal of Geometry 17, sy. 1 (Nisan 2024): 34-43. https://doi.org/10.36890/iejg.1330887.
EndNote Arslan K, Aydın Y, Bulca Sokur B (01 Nisan 2024) Rotational Self-Shrinkers in Euclidean Spaces. International Electronic Journal of Geometry 17 1 34–43.
IEEE K. Arslan, Y. Aydın, ve B. Bulca Sokur, “Rotational Self-Shrinkers in Euclidean Spaces”, Int. Electron. J. Geom., c. 17, sy. 1, ss. 34–43, 2024, doi: 10.36890/iejg.1330887.
ISNAD Arslan, Kadri vd. “Rotational Self-Shrinkers in Euclidean Spaces”. International Electronic Journal of Geometry 17/1 (Nisan 2024), 34-43. https://doi.org/10.36890/iejg.1330887.
JAMA Arslan K, Aydın Y, Bulca Sokur B. Rotational Self-Shrinkers in Euclidean Spaces. Int. Electron. J. Geom. 2024;17:34–43.
MLA Arslan, Kadri vd. “Rotational Self-Shrinkers in Euclidean Spaces”. International Electronic Journal of Geometry, c. 17, sy. 1, 2024, ss. 34-43, doi:10.36890/iejg.1330887.
Vancouver Arslan K, Aydın Y, Bulca Sokur B. Rotational Self-Shrinkers in Euclidean Spaces. Int. Electron. J. Geom. 2024;17(1):34-43.