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Abstract: In cognitive diagnosis modeling, the attributes required for each 

item are specified in the Q-matrix. The traditional way of constructing a Q-

matrix based on expert opinion is inherently subjective, consequently 

resulting in serious validity concerns. The current study proposes a new 

validation method under the deterministic inputs, noisy “and” gate (DINA) 

model to empirically validate attribute specifications in the Q-matrix. In 

particular, an iterative procedure with a modified version of the sequential 

search algorithm is introduced. Simulation studies are conducted to compare 

the proposed method with existing parametric and nonparametric methods. 

Results show that the new method outperforms the other methods across the 

board. Finally, the method is applied to real data using fraction-subtraction 

data. 
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1. INTRODUCTION 

Cognitive diagnosis models (CDMs) require a Q-matrix (Tatsuoka, 1983) to identify the 

specific subset of attributes measured by each item. The entry qjk in row j and column k of the 

Q-matrix is 1 if the 𝑘𝑡ℎ attribute is required to correctly answer item j, and 0 otherwise. Due to 

its nature, constructing a Q-matrix is usually subjective, which has raised serious validity 

concerns among researchers. For instance, the estimation of model parameters, and ultimately 

the accuracy of attribute classifications may be negatively affected by including or omitting 

multiple q-entries in the Q-matrix (de la Torre, 2011; Rupp & Templin, 2008). However, the 

Q-matrix is usually assumed to be correct once specified by domain experts. This assumption 

is generally made because until recently, few well-established methods have become available 

to detect misspecifications in the Q-matrix (Chiu, 2013; de la Torre, 2008; Rupp & Templin, 

2008), particularly when general CDMs are involved (de la Torre & Chiu, 2016; Liu, Xu, & 

Ying, 2012; Terzi, 2017). Any analysis, such as model-fit evaluation, that does not check the 

correctness of the Q-matrix, becomes questionable.  
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These concerns have led to developments of some statistical methods for validating the 

appropriateness of Q-matrix specifications. One of the earlier studies on the Q-matrix 

validation was introduced by de la Torre (2008) for the deterministic inputs, noisy “and” gate 

(DINA; Haertel, 1989; Junker & Sijtsma, 2001) model. It is an empirically based δ-method that 

defines the correct q-vector for each item. In doing so, the discrimination index of item j, 𝛿𝑗, is 

estimated. The index 𝛿𝑗 is the difference in the probabilities of correct responses between 

examinees who have mastered the required attributes and those who have not. Using the δ-

method, two algorithms were discussed in de la Torre (2008). However, the algorithms have 

some limitations. As noted by de la Torre (2008), an incorrect Q-matrix because of over- and 

under-specifications of attributes can cause bias in parameter estimation. This issue cannot be 

completely addressed by the algorithms because they usually choose q-vectors with all 

attributes specified. For one of the algorithms, the sequential search algorithm (SSA), it is also 

not clear what cut-off values should be used in practice because it could vary depending on 

many conditions, such as changes in sample sizes, test lengths, item qualities, and amount of 

misspecifications, all of which were fixed in de la Torre (2008)'s paper. It should also be noted 

that the algorithm was not implemented iteratively, meaning that the validation method stops 

after one full iteration even if changes are made in the provisional Q-matrix. 

Another method, the Q-matrix refinement method (QRM), was proposed by (Chiu, 2013) 

based on a nonparametric classification procedure (Chiu & Douglas, 2013). This method aims 

to minimize the residual sum of squares (RSS) between the observed and ideal responses 

among all the possible q-vectors given a Q-matrix. The RSS is used to identify any misspecified 

q-entries for an item. In the algorithm, the item vector with the highest RSS gets replaced by 

the one having the lowest RSS. The process is repeated iteratively until the convergence 

criterion is met. Due to its nature as a nonparametric method, it neither relies on the estimation 

of model parameters nor makes any assumptions other than those made by the CDM itself 

(Chiu, 2013). However, if the underlying model is known, parametric methods should provide 

more powerful results particularly when N is large.  

DeCarlo (2011) introduced a model-based approach using a Bayesian extension of the 

DINA model. In this method, possible misspecified entries in the Q-matrix were identified in 

advance. Then, these entries were treated as random (Bernoulli) variables and estimated with 

the rest of the model parameters. Limitations of this method are that it is computationally time-

consuming and any misspecified q-entries have to be identified in advance. Unlike DeCarlo 

(2011)'s study, Liu et al. (2012) proposed a data-driven approach in that any expert involvement 

in Q-matrix design is not required for identifying misspecified entries in the Q-matrix. 

However, when unknown guessing parameters exist, the identifiability of the Q-matrix can be 

difficult. 

Recently, de la Torre and Chiu (2016) developed a discrimination index, as an extension 

of the empirically based δ-method (de la Torre, 2008), using the G-DINA model. This index 

can be applied under a wider class of CDMs. However, the findings of the study were limited 

to the fixed sample size and test length. Moreover, the index does not determine optimal ε 

values that prevent q-entries from over- or under-specifications, and the procedure is not 

iterative, meaning that it stops further identifying attribute specifications after the first round 

of validation step.   

The purpose of this current study is to introduce an iterative procedure in conjunction 

with a modified version of the SSA, and is called iterative modified SSA (IMSSA). The new 

method aims to make three crucial contributions to the Q-matrix validation literature. First, 

using simulation, an approximation was made to generally define an empirically based a cut-

off value applicable across all conditions. Second, the search algorithm only focuses on single-

attribute specifications so that it can eliminate additional complications that could happen due 
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to q-vectors with more than single-attribute specifications. Third, the algorithm is implemented 

iteratively, such that, if any q-vectors are changed in the previous iteration, a new calibration 

is carried out using the updated Q-matrix as the provisional Q-matrix. The iterative algorithm 

aims to alleviate negative effects of any misspecified attribute specifications given in the 

preceding iteration. In this present study, iterative and non-iterative algorithms were compared 

to examine if an iterative algorithm can further identify and correct misspecifications in 

succeeding iterations.  

Given the purpose, the rest of the paper consists of the following sections: First is a brief 

background on the DINA model, Q-matrix refinement method, and exhaustive and sequential 

search algorithms. Second is a presentation of the new method proposed in this paper. This is 

followed by simulation study design and results. Then, real data analysis and its results are 

introduced. Finally, the paper concludes with a discussion and conclusion for future studies. 

2. BACKGROUND 

2.1. The DINA Model 

The DINA model has been commonly used in many studies (e.g., de la Torre & Douglas, 

2004, 2008; de la Torre, 2009a; DeCarlo, 2011; Kuo, Pai, & de la Torre, 2016; Liu, Ying, & 

Zhang, 2015; Park & Lee, 2014; Rupp & Templin, 2008). This study focuses on the DINA 

model because of its more straightforward interpretations, smaller sample size requirements 

for accurate parameter estimation (Rojas, de la Torre, & Olea, 2012), and flexibility for 

extension to more general cognitive diagnostic models. The DINA model is an example of a 

conjunctive model for dichotomously scored test items, where all required attributes of an item 

should be mastered by examinees before an examinee can be expected to correctly answer the 

item. Nonmastery of one or more required attributes for an item is equivalent to nonmastery of 

all required attributes. Let examinee i’s binary attribute vector be denoted by 𝜶𝑖 = {𝛼𝑖𝑘}. The 

item response function of the model is defined as:  

 

𝑃 (𝑋𝑖𝑗 = 1|𝛼𝑖) = (1 − 𝑠𝑗)
𝜂𝑖𝑗

𝑔𝑗
(1−𝜂𝑖𝑗),                                   (1) 

 

which is the probability of answering an item j correctly by examinees with the attribute pattern 

𝜶𝑖, 𝑋𝑖𝑗 is the response of examinee i (i = 1, 2, …, N) to item j (j = 1, 2, …, J), and 𝜂𝑖𝑗 is the 

ideal response computed as: 

 

𝜂𝑖𝑗 = ∏ 𝛼𝑖𝑘
𝑞𝑗𝑘𝐾

𝑘=1 ,                                              (2) 

 

an indicator of whether all of the required attributes associated with item j have been mastered 

by examinee i.   

2.2. Q-Matrix Refinement Method 

The RSS of item j across all examinees is defined as:  
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where ijX  and ij  are the observed and ideal item responses of examinee i to item j, 

respectively, 𝐶𝑚 is the latent proficiency class m, and N is the number of examinees. Note that 

the index j of 𝜂𝑖𝑗 in Equation 3 was replaced by m because ideal item responses are class-
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specific, meaning that every examinee in the same latent class is assumed to have the same 

ideal response to an item (Chiu, 2013).   

2.3. Exhaustive Search Algorithm 

The exhaustive search algorithm (ESA) for Q-matrix validation computes 𝛿𝑗𝑙 for all 𝑙 =

2𝐾 –  1 possible q-vectors for each j item (de la Torre, 2008). The q-vector that gives the largest 

difference in the probabilities of correct response between examinees who have all the required 

attributes (𝜂𝑗𝑙 = 1) and those who do not have (𝜂𝑗𝑙 = 0) among all the possible attribute 

patterns is chosen as the correct q-vector for item j. However, the algorithm becomes 

impractical when K is reasonably large. Additionally, the ESA has the tendency to choose over-

specified q-vectors (de la Torre, 2008).   

2.4. Sequential Search Algorithm 

The sequential search algorithm (SSA), in comparison to the ESA, is considered more 

efficient because it does not require the comparisons of 𝛿𝑗𝑙 for all the possible attribute patterns. 

More specifically, 𝛿𝑗𝑙 is computed for (𝐾𝑗 + 1)𝐾 −  (𝐾𝑗
2 + 𝐾𝑗)/2 q-vectors for item j, where 

𝐾𝑗 is the number of attributes required for item j (de la Torre, 2008).  

The SSA starts by comparing 𝛿𝑗𝑙
1  of single-attribute q-vectors with the superscript (1) 

referring to single-attribute q-vectors. Let 𝛿𝑗
1 be the largest of 𝛿𝑗𝑙

1  from single-attribute q-

vectors, and assume that this is due to 𝛼1. The process continues by examining 𝛿𝑗𝑙 of two-

attribute q-vectors, 𝛿𝑗
2, where 𝛼1 is one of the required attributes. If 𝛿𝑗𝑙

2 > 𝛿𝑗𝑙
1 , the single-

attribute q-vector is replaced by a two-attribute q-vector. However, if 𝛿𝑗𝑙
1 > 𝛿𝑗𝑙

2, the process is 

terminated choosing 𝛼1 as the correct attribute specification for the q-vector. Otherwise, the 

process continues with such comparisons until a K-attribute q-vector is chosen as long as the 

difference of succeeding 𝛿𝑗𝑙 values (i.e., 𝛿̂
𝑗

(𝐾𝑗+1)
− 𝛿̂

𝑗

(𝐾𝑗)
) is larger than a predetermined cut-off 

value.  

As stated earlier, estimation that involves some misspecified q-vectors can affect the 

quality of parameter estimation (Rupp & Templin, 2008) and this in turn affects the accuracy 

of the validation method. Similarly, the noise due to the stochastic nature of the response 

process makes it possible to obtain a q-vector with more attribute specifications than necessary. 

Especially using real data can cause 𝛿̂
𝑗

(𝐾𝑗+1)
> 𝛿̂

𝑗

(𝐾𝑗)
 or the reverse, resulting in over- or under-

specifications, respectively. A suggested solution is to assign ε, which is a minimum increment 

in the discrimination index of the item before an additional attribute can be included, as in, 

𝛿̂
𝑗

(𝐾𝑗+1)
− 𝛿̂

𝑗

(𝐾𝑗)
> 𝜀 (de la Torre, 2008).    

3. THE PROPOSED METHOD 

3.1. An Iterative Method for Empirically-Based Q-Matrix Validation 

This study introduces an iterative procedure in conjunction with a modified version of 

the SSA, and is called iterative modified SSA (IMSSA). The IMSSA differs from the SSA in 

two respects. First, the IMSSA determines required attribute specifications based on only the 

single-attribute q-vectors. Similar to the empirically based δ-method (de la Torre, 2008), the 

IMSSA starts by estimating the item parameters via an empirical Bayesian implementation of 

the expected-maximization (EM) algorithm (de la Torre, 2009b) using a provisional Q-matrix. 

The K numbers of 𝛿̂s corresponding to the single-attribute q-vectors (i.e., 𝛿𝑗
1) are then estimated 

and ordered from the highest to the lowest. The correct attribute specification is determined 
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based on the proportion of 𝛿̂𝑗𝑙∗
1  relative to the maximum 𝛿̂𝑗(max)

1  (i.e., 𝛿̂𝑗𝑙∗
1 /𝛿̂𝑗(max)

1 , for 𝑙∗ =

1,2, … , 𝐾) for item j. 𝛿̂𝑗(max)
1  is 𝛿̂𝑗𝑙∗=1

1  because it corresponds to the best suggested attribute 

specification. The noise due to the use of the estimated posterior distribution should be 

controlled so as to not cause any over- or under-specifications. That can be done by using a 

cut-off point denoted by 𝜀(1), which represent the minimum ratio between single-attribute q-

vectors and the best single-attribute q-vector corresponding to 𝛿̂𝑗(max)
1 . Specifically, if 𝛿̂𝑗2

1  is 

considerably smaller than 𝛿̂𝑗(max)
1  (i.e., 𝛿̂𝑗2

1 /𝛿̂𝑗(max)
1 <  𝜀(1)  , the required attribute would be an 

attribute specified in the single-attribute q-vector corresponding to 𝛿̂𝑗(max)
1 ; if not, the attribute 

specifications in the first two q-vectors are chosen. It continues by checking the ratio  

𝛿̂𝑗3
1 /𝛿̂𝑗(max)

1 . If the ratio is larger than 𝜀(1), the attribute specification in the third q-vector is also 

added on the top of the previous two specifications, and it continues; otherwise, the process is 

terminated. The ratio between 𝛿̂𝑗𝑙∗
1  and 𝛿̂𝑗(max)

1  was determined based on some preliminary 

findings, and the values of 𝜀(1), the cut-off point, were defined using simulated response data. 

At this point, an example can be helpful to lay out the rationale as to how the study 

determines the correctness of attribute specifications based on the ratio of 𝛿̂s to the maximum 

𝛿̂. For illustration purposes, we considered two items, each with a misspecified attribute 

specification. In practice, the provisional Q-matrix may not have entirely correct specifications. 

However, data based on parameter estimates using the provisional Q-matrix can be generated. 

The 𝛿̂-computation for the simulated data can be monitored, which can allow us to define 

extreme changes in the ratio of 𝛿̂s. 

Examples of 𝛿̂𝑗𝑙∗
1  computations for the simulated data can help determine whether or not 

the algorithm could identify correct specifications. Assume that K = 5. Table 1 displays 

examples of items that have over- and under-specifications. In the first misspecification, the q-

vector (1,0,0,0,0)′ is over-specified as in (1,0,1,0,0)′. The EM estimation is carried out with 

the latter q-vector, and 𝛿̂s of single-attribute q-vectors are estimated and sorted from the highest 

to the lowest. The result suggests that the correct attribute specification is only 𝛼1 (𝛿̂𝑗(max)
1 =

.41) due to a large drop in 𝛿̂𝑗2
1  (i.e., 𝛿̂𝑗2

1  /𝛿̂𝑗(max)
1 = .15 < 𝜀(1)), in that a value of 𝜀(1) will be 

determined later. A similar result is also observed for an item that has been under-specified. 

The misspecification appears as (1,0,0,0,0)′  from the correct vector of (1,1,0,0,0)′ in the right-

hand side of Table 1. The ratio of the second 𝛿̂𝑗2
1  to the maximum 𝛿̂𝑗(max)

1  shows a small drop 

(i.e., 𝛿̂𝑗2
1 /𝛿̂𝑗(max)

1 = .73 >  𝜀(1)); however, the next ratio is rather small (i.e., 𝛿̂𝑗3
1 /𝛿̂𝑗(max)

1 =

.13 < 𝜀(1)). Therefore, the attributes in the first two single-attribute q-vectors are accurately 

specified (i.e., 𝛼1 and 𝛼2). Note that the criterion is similar to the method proposed by de la 

Torre and Chiu (2016), which is the proportion of variance accounted for (PVAF) by a 

particular q-vector relative to the maximum 𝛿̂2 that is achieved when all the attributes are 

specified (i.e., (1,1,1,1,1)′). However, the criterion in this study is not exactly the same, 

because it is relative to the best attribute specification, not the attribute vector with all the 

attributes specified. 

Second, the IMSSA becomes more efficient than the original SSA because 𝛿̂ is not 

computed beyond single-attribute vectors. As such, the maximum number of comparisons for 

the new algorithm is K, which is considerably smaller than SSA (i.e., (𝐾𝑗 + 1)𝐾 − (𝐾𝑗
2 +

𝐾𝑗)/2) and ESA (i.e., 2𝐾 − 1), where K is the total number of attributes and 𝐾𝑗 is the number 

of attributes being measured by item j. For example, let 𝐾 = 10 and 𝐾𝑗 = 3. The maximum 

number of comparisons is 10 for the IMSSA, 34 for the SSA, and 1023 for the ESA. Thus, 

using the IMSSA can lessen complications associated with multiple search steps. In summary, 
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examining the proportion of 𝛿̂ by a particular single-attribute q-vector to the maximum 𝛿̂ using 

a provisional q-vector could suggest which attributes should be specified -- 𝛿̂ of required 

attributes are considerably larger compared to 𝛿̂ of other attributes. 

Table 1. Examples for Over- and Under-Specifications 

  (1,0,0,0,0)′ → (1,0,1,0,0)′    (1,1,0,0,0)′ → (1,0,0,0,0)′  

𝑙∗  𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛿̂𝑗𝑙∗
1  

𝛿̂𝑗𝑙∗
1

/𝛿̂𝑗(𝑚𝑎𝑥)
1  

 
 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5  𝛿̂𝑗𝑙∗

1  
𝛿̂𝑗𝑙∗

1

/𝛿̂𝑗(𝑚𝑎𝑥)
1  

 

1  1 0 0 0 0  .41 1.00 √  1 0 0 0 0  .40 1.00 √ 

2  0 0 1 0 0  .06 0.15   0 1 0 0 0  .29 0.73 √ 

3  0 0 0 0 1  .04 0.10   0 0 0 0 1  .05 0.13  

4  0 1 0 0 0  .04 0.10 
  0 0 1 0 0  -

.01 
-0.03 

 

5  0 0 0 1 0  -

.00 
0.00 

  0 0 0 1 0  -

.03 
      -0.08 

 

Note. The symbol √ displays the chosen attributes based on the associated δ-ratio. (1,0,0,0,0)′ → (1,0,1,0,0)′: (1,0,0,0,0)′ is 

over-specified as in (1,0,1,0,0)′. (1,1,0,0,0)′ → (1,0,0,0,0)′: (1,1,0,0,0)′ is under specified as in (1,0,0,0,0)′. Negative values 

in the ratio come from the negative δ̂. For example, .52 and .49 for the slip and guessing parameters, respectively, δ̂jl∗=4
1 =

1 − sjl∗=4 − gjl∗=4 = 1 − .52 − .49 = −.03. 

4. SIMULATION STUDY DESIGN 

To evaluate the viability of the proposed method, two simulation studies were conducted 

with the following goals: (1) to determine an optimal 𝜀(1) value, which could be generalized 

across the conditions; and (2) to compare the effectiveness of different validation methods with 

an iterative and noniterative algorithm. For each simulation condition, 100 datasets were 

replicated using the DINA model with the following factors: sample sizes (N = 1,000 and 

2,000), test lengths (J = 15 and 30), item qualities (𝑠𝑗 = 𝑔𝑗 = 0.1, 0.2, and 0.3), and amount of 

misspecifications (5% and 10%). In this study, the three sets of item qualities were considered 

similar to Hou, de la Torre, and Nandakumar (2014). In each condition, 100 misspecified Q-

matrices were generated, which contain 5% or 10% randomly misspecified q-entries. Two 

constraints were imposed on altering the q-vectors, namely, the misspecified q-vectors cannot 

have more than two-attribute misspecifications, and at least one attribute should be specified 

as 1. For example, if a Q-matrix has 10% misspecifications for J = 30 and K = 5, 15 of 150 

entries were randomly altered by producing over- or under-specified q-vectors, where almost 

eight to 15 q-vectors are misspecified. In doing so, the study was able to focus on the impact 

of the amount of misspecifications rather than the type of misspecifications. It should be noted 

that the true Q-matrices in Table 2 for J = 15 and 30 are related in two ways. Each attribute is 

measured six and 12 times when J = 15 and 30, respectively, and there are equal numbers of 

1-, 2-, and 3-attribute q-vectors in the each Q-matrix. Finally, the attribute profiles were 

generated from a uniform distribution in that all the possible attribute patterns were generated 

with equal probabilities from a multinomial distribution. 

To define an optimal 𝜀(1) value for the IMSSA, the item quality was generated from 

Unif(0.05,0.45). Based on the results of a pilot study, the performance of the proposed method 

was examined given 𝜀(1) values in the range 0.10 to 0.90, with an increment of 0.1. After 

defining an optimal 𝜀 value, the second simulation study was conducted to compare the five 

validation procedures: IMSSA, MSSA, ESA, SSA, and QRM. These methods were compared 

based on the proportions of correctly identifying attribute specifications at the vector level. The 

code to implement the IMSSA, MSSA, ESA, and SSA was written in Ox (Doornik, 2009), 

whereas, the NPCD R package (Zheng & Chiu, 2015) was used (R Core Team, 2014) for the 

QRM analyses. 
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Table 2. True Q-Matrix for the Simulated Data  

Item 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 Item 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 Item 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

1* 1 0 0 0 0 11* 1 1 0 0 0 21* 1 1 1 0 0 

2* 0 1 0 0 0 12* 1 0 1 0 0 22* 1 1 0 1 0 

3* 0 0 1 0 0 13 1 0 0 1 0 23 1 1 0 0 1 

4* 0 0 0 1 0 14 1 0 0 0 1 24 1 0 1 1 0 

5* 0 0 0 0 1 15 0 1 1 0 0 25* 1 0 1 0 1 

6 1 0 0 0 0 16 0 1 0 1 0 26 1 0 0 1 1 

7 0 1 0 0 0 17* 0 1 0 0 1 27 0 1 1 1 0 

8 0 0 1 0 0 18* 0 0 1 1 0 28 0 1 1 0 1 

9 0 0 0 1 0 19 0 0 1 0 1 29* 0 1 0 1 1 

10 0 0 0 0 1 20* 0 0 0 1 1 30* 0 0 1 1 1 

Note. Items with * are used for J = 15.  

5. FINDINGS 

5.1. Simulation Study I 

In the first simulation study, the performance of the IMSSA was observed to define an optimal 

𝜀(1) value which can be used under all conditions. Focusing in the range 0.10 to 0.90, values 

were derived based on the highest proportions of correctly identifying attribute specifications 

on average throughout all conditions, as shown in Table 3. When 𝜀(1) = 0.50 and 0.60, 92% of 

the q-vectors were correctly identified on average, which is the highest proportions of recovery 

across all 𝜀(1) values. Thus, 𝜀(1) was set at 0.50 in the second simulation study. 

Table 3. Proportions of Recovery for Various Cut-off Values  

N J % 
ε 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

1,000 

15 
5 0.01 0.18 0.66 0.84 0.94 0.96 0.94 0.90 0.78 

10 0.06 0.38 0.63 0.79 0.87 0.85 0.80 0.67 0.41 

30 
5 0.33 0.86 0.96 0.98 0.99 0.97 0.93 0.83 0.51 

10 0.12 0.60 0.87 0.93 0.98 0.95 0.87 0.73 0.47 

2,000 

15 
5 0.23 0.64 0.80 0.86 0.88 0.91 0.88 0.78 0.44 

10 0.11 0.39 0.55 0.68 0.74 0.77 0.75 0.62 0.39 

30 
5 0.38 0.89 0.96 0.98 0.98 0.97 0.93 0.86 0.64 

10 0.13 0.68 0.91 0.95 0.97 0.96 0.90 0.80 0.54 

Average 0.17 0.58 0.79 0.88 0.92 0.92 0.87 0.77 0.52 

Note. Numbers in bold are the highest proportions of recovery for each condition. 

5.2. Simulation Study II 

Table 4 shows results reported at the vector level, which are divided into two, with and 

without iterative algorithms. Among the methods with a non-iterative algorithm, the MSSA 

outperformed the others for each simulation condition considered in this study. In addition, the 

SSA (76%) provided better recovery than the ESA (74%) on average across all the conditions. 

As noted in de la Torre (2008), the SSA procedure was originally proposed to be a more 

efficient algorithm that does not require computing 𝛿𝑗𝑙 for the 2𝐾 − 1 possible q-vectors; 

however, results based on the ESA and SSA did not show considerable differences, which was 
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only 2% on average. In general across the conditions, the average recovery of the MSSA was 

89% of the q-vectors; whereas, the average recoveries of the ESA and SSA were 74% and 76%, 

respectively. In particular, recovery based on the MSSA was 15% and 13% higher than that of 

the ESA and SSA, respectively. Therefore, even though an iterative algorithm was not 

implemented in the MSSA, we could state that the modified version of the SSA (MSSA) 

improved the recovery in comparison to the SSA. 

Specifically in comparing the iterative methods (i.e., IMSSA and QRM) under the high 

quality item, the QRM worked usually equally well as or better than the IMSSA. In this quality 

of items, both methods had perfect or above 97% of recovery. In continuing the comparison of 

the IMSSA and QRM under the medium quality item, both methods had recovery of attribute 

specifications above 99% when J = 30. The lowest recovery was 69% for the QRM and 86% 

for the IMSSA. When data were generated from the low quality item, the IMSSA (81%) had 

9% more recovery than the QRM (72%) on average. The QRM only outperformed the IMSSA 

under four conditions, where the proportions of recovery differed only by 1% to 2% when the 

item qualities were medium (i.e., N = 1,000, J = 30 with 5% and 10% misspecifications) and 

high (i.e., N = 1,000, J = 15 with 10% misspecifications and N = 2,000, J = 15 with 10% 

misspecifications), respectively. Other than these differences, the IMSSA provided a better 

overall recovery than the QRM.  

It is interesting to report that the performance of the QRM was equally well or worse 

when the sample size was doubled. For example, when the item quality was low under a 

condition where N = 1,000, J = 30 with 5% misspecifications, doubling the sample size to N = 

2,000 resulted in the recovery dropping from 85% to 83%. In contrast, considering the same 

conditions, the recovery improved from 70% to 77% for the ESA, from 73% to 79% for SSA, 

from 88% to 92% for MSSA, and from 89% to 93% for the IMSSA. However, doubling the 

test items from 15 to 30, the recovery increased for all the methods. This finding can indicate 

that doubling the test length can lead to better improvement in recovery more than doubling 

the sample size.  

Similarly, with regards to the difference in recovery rates due to the amount of 

misspecifications within the same conditions (i.e., N and J), a larger test length provided a 

smaller gap than a larger sample size. That is, recovery differences between 5% and 10% 

misspecifications were higher with a larger sample size than a longer length test. For example, 

among the non-iterative methods when N = 1,000 and J = 15 under the high quality item, 

recovery differences between 5% and 10% misspecifications were 22%, 21%, and 9% for the 

SSA, ESA, and MSSA, respectively, which dropped to 9%, 8%, and 0% when J = 30 holding 

the sample size constant. However, doubling the sample size with a fixed test length did not 

change the recovery differences that much, which was only 20%, 19%, and 9% for the SSA, 

ESA, and MSSA, respectively. In taking the amount of misspecifications into account for the 

non-iterative methods, doubling the test length had a considerably positive impact on the 

recovery than doubling the sample size. 

For the iterative methods, again, doubling the test length decreased the difference in 

recovery rates between 5% and 10% misspecified Q-matrices. Under the same conditions, 

when N = 1,000 and J = 15, it was 1% for the QRM (i.e., 100 - 99 = 1) and 3% for the IMSSA 

(i.e., 100 - 97 = 13). However, that gap was smaller when J = 30 than N = 2,000. The difference 

substantially dropped for both methods after doubling the test length with a constant sample 

size. Therefore, based on these findings, it can be stated that doubling the test length 

substantially improved the recovery for both iterative methods and decreased the recovery 

differences due to a different amount of misspecifications. 
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Table 4. Proportions of Recovery for Misspecification in the Q-Matrix 

     Non-Iterative  Iterative 

Quality N J %  ESA SSA MSSA  QRM IMSSA 

H 

1,000 

15 
5  0.83 0.85 0.99  1.00 1.00 

10  
0.61 0.64 0.90  0.99 0.97 

30 
5  0.94 0.96 1.00  1.00 1.00 

10  
0.85 0.88 1.00  1.00 1.00 

2,000 

15 
5  0.86 0.87 1.00  1.00 1.00 

10  
0.66 0.68 0.91  0.99 0.97 

30 
5  0.98 0.99 1.00  1.00 1.00 

10  
0.91 0.93 0.99  1.00 1.00 

M 

1,000 

15 
5  0.80 0.82 0.94  0.90 0.96 

10  0.60 0.60 0.79  0.70 0.86 

30 
5  0.78 0.82 0.99  1.00 0.99 

10  0.64 0.68 0.97  1.00 0.99 

2,000 

15 
5  0.83 0.84 0.95  0.90 0.97 

10  0.64 0.64 0.80  0.69 0.89 

30 
5  0.85 0.89 1.00  1.00 1.00 

10  0.69 0.74 0.98  1.00 1.00 

L 

1,000 

15 
5  0.69 0.71 0.82  0.81 0.82 

10  0.51 0.51 0.64  0.61 0.64 

30 
5  0.70 0.73 0.88  0.85 0.89 

10  0.56 0.59 0.74  0.65 0.81 

2,000 

15 
5  0.80 0.81 0.84  0.81 0.85 

10  0.59 0.59 0.64  0.61 0.67 

30 
5  0.77 0.79 0.92  0.83 0.93 

10  0.61 0.62 0.77  0.62 0.87 
 Average  0.74 0.76 0.89  0.87 0.92 

Note. ESA: exhaustive search algorithm, SSA: sequential search algorithm with ε = .01, MSSA: 

non-iterative modified sequential search algorithm, QRM: Q-matrix refinement method with an 

iterative algorithm, IMSSA: iterative modified sequential search algorithm, H: high quality, M: 

medium quality, L: low quality, N: sample size, J: test length, %: amount of misspecification.    

 

In summary, the proposed MSSA and IMSSA worked much better than the other 

methods. That is, after averaging the proportions of recovery across the conditions (i.e., N, J, 

item qualities, and amount of misspecifications), recovery based on the IMSSA (92%) and 

MSSA (89%) was 5% and 2% higher than that of the QRM (87%), respectively, and rather 

larger than the ESA and SSA. Note that the number of iterations in the iterative procedures was 

usually between two and three, and did not go beyond four. 

6. REAL DATA ANALYSIS 

6.1. Data 

In addition to the simulation study, real data were analyzed to investigate the applicability 

of the method. The fraction-subtraction data (Tatsuoka, 1984) with 536 middle school students’ 

responses to 12 fraction subtraction problems were examined. The four attributes for this 

dataset are: (a) performing a basic fraction subtraction operation, (b) simplifying/reducing, (c) 

separating a whole number from fraction, and (d) borrowing one from a whole number to 
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fraction. The 12 items with the corresponding attribute specifications and 𝛿̂ values are shown 

in Table 5. 

Table 5. Q-Matrix for Fraction-Subtraction Items 

   Attribute  

Item   𝛼1 𝛼2 𝛼3 𝛼4 𝛿̂ 

1 
3

4
−

3

8
  1 0 0 0 0.72 

2 3
1

2
− 2

3

2
  1 1 1 1 0.66 

3 
6

7
−

4

7
  1 0 0 0 0.83 

4 3
7

8
− 2  1 0 1 0 0.42 

5 4
4

12
− 2

7

12
  1 1 1 1 0.74 

6 4
1

3
− 2

4

3
  1 1 1 1 0.86 

7 
11

8
−

1

8
  1 1 0 0 0.80 

8 3
4

5
− 3

2

5
  1 0 1 0 0.86 

9 4
5

7
− 1

4

7
  1 0 1 0 

0.80 

10 7
3

5
−

4

5
  1 0 1 1 0.84 

11 4
1

10
− 2

8

10
  1 1 1 1 0.71 

12 4
1

3
− 1

5

3
  1 1 1 1 

0.82 

Note. 𝛼1 - performing a basic fraction subtraction operation; 𝛼2 - simplifying/reducing; 𝛼3 - separating a whole 

number from fraction; and 𝛼4 - borrowing one from a whole number to fraction. 

 

Note that the data set of Tatsuoka (1984) has been one of the most commonly examined 

real data designed for cognitively diagnostic assessment (Chiu, 2013; Chiu & Köhn, 2015; de 

la Torre, 2008; de la Torre & Chiu, 2016; DeCarlo, 2011). In CDM analyses, one of the main 

concerns is the completeness of the Q-matrix. Unfortunately, the fraction-subtraction data do 

not appear to have a complete Q-matrix. It was demonstrated by Chiu, Douglas, and Li (2009) 

that a complete Q-matrix should identify all possible attribute patterns and require each 

attribute to be represented by at least one single-attribute vector. This issue has been further 

discussed with the original data (see Table 4 on pp. 615, Chiu, 2013; DeCarlo, 2011) or subsets 

of it (see de la Torre, 2008; de la Torre & Chiu, 2016). The incompleteness of the Q-matrix in 

this dataset occurs because of the fact that only 58 of 256 (K = 8; Chiu, 2013) and 10 of 32 (K 

= 5; Chiu & Köhn, 2015) possible attribute patterns can be identified by the items, meaning 

that multiple classes may be merged (Chiu, 2013). Therefore, results of this data analysis 

should be interpreted with caution. 

6.2. Results 

For the IMSSA, 𝛿̂𝑗𝑙∗
1  statistic and 𝛿̂𝑗𝑙∗

1 /𝛿̂𝑗(𝑚𝑎𝑥)
1  ratios for 12 items are reported in Table 6, 

and the suggested Q-matrix is further shown in Table 7. Given the results in the first simulation 

study, the 𝜀(1) values were set at 0.50 and 0.60.   
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Table 6. Suggested Single-Attribute Specifications with 𝛿̂-values for the Fraction-Subtraction Test 

Item 𝛼1 𝛼2 𝛼3 𝛼4 𝛿𝑗𝑙∗
1  𝛿𝑗𝑙∗

1 /𝛿̂𝑗(𝑚𝑎𝑥)
1   Item 𝛼1 𝛼2 𝛼3 𝛼4 𝛿𝑗𝑙∗

1  𝛿𝑗𝑙∗
1 /𝛿̂𝑗(𝑚𝑎𝑥)

1  

1 

1* 0 0 0 0.72 1.00  

7 

1* 0 0 0 0.73 1.00 

0 0 1* 0 0.45 0.63  0 1* 0 0 0.71 0.97 

0 1* 0 0 0.40 0.56  0 0 1* 0 0.56 0.77 

0 0 0 1 0.34 0.47  0 0 0 1 0.15 0.21 

2 

0 0 0 1* 0.55 1.00  

8 

1* 0 0 0 0.82 1.00 

1* 0 0 0 0.34 0.62  0 0 1* 0 0.75 0.91 

0 1* 0 0 0.30 0.55  0 1* 0 0 0.51 0.62 

0 0 1* 0 0.30 0.55  0 0 0 1 0.13 0.16 

3 

1* 0 0 0 0.83 1.00  

9 

1* 0 0 0 0.75 1.00 

0 0 1* 0 0.45 0.54  0 0 1* 0 0.71 0.95 

0 1 0 0 0.37 0.45  0 1* 0 0 0.49 0.65 

0 0 0 1 0.07 0.08  0 0 0 1 0.15 0.20 

4 

1* 0 0 0 0.39 1.00  

10 

0 0 0 1* 0.66 1.00 

0 0 1* 0 0.37 0.95  1* 0 0 0 0.52 0.79 

0 1* 0 0 0.26 0.67  0 0 1* 0 0.49 0.74 

0 0 0 1 0.08 0.21  0 1* 0 0 0.46 0.70 

5 

0 0 0 1* 0.57 1.00  

11 

1* 0 0 0 0.56 1.00 

1* 0 0 0 0.47 0.82  0 0 0 1* 0.51 0.91 

0 1* 0 0 0.42 0.74  0 0 1* 0 0.50 0.89 

0 0 1* 0 0.41 0.72  0 1* 0 0 0.48 0.86 

6 

0 0 1* 0 0.67 1.00  

12 

0 0 0 1* 0.64 1.00 

1* 0 0 0 0.53 0.79  1* 0 0 0 0.48 0.75 

0 1* 0 0 0.51 0.76  0 1* 0 0 0.47 0.73 

0 0 1* 0 0.49 0.73  0 0 1* 0 0.44 0.69 

Note. * indicates a suggested attribute specification, 𝜀(1) = 0.50. 

Table 7. Suggested Q-Matrix by the IMSSA and QRM for the Fraction-Subtraction Test 

  IMSSA (𝜀(1) = 0.50)  IMSSA (𝜀(1) = 0.60)  QRM 

Item  𝛼1 𝛼2 𝛼3 𝛼4  𝛼1 𝛼2 𝛼3 𝛼4  𝛼1 𝛼2 𝛼3 𝛼4 

1  1 1* 1* 0  1 1* 0 0  1 0 0 1* 

2  1 1 1 1  1 0* 0* 0*  1 1 1 1 

3  1 1* 0 0  1 0 0 0  1 0 0 0 

4  1 1* 1 0  1 1* 1 0  1 0 1 0 

5  1 1 1 1  1 1 1 1  1 1 1 1 

6  1 1 1 1  1 1 1 1  1 1 1 1 

7  1 1 1* 0  1 1 1* 0  1 1 0 0 

8  1 1* 1 0  1 1* 1 0  1 0 1 0 

9  1 1* 1 0  1 1* 1 0  1 0 1 0 

10  1 1* 1 1  1 1* 1 1  1 1* 1 1 

11  1 1 1 1  1 1 1 1  1 0* 1 1 

12  1 1 1 1  1 1 1 1  1 1 1 1 

Note. 𝛼1 - performing a basic fraction subtraction operation; 𝛼2 - simplifying/reducing; 𝛼3 - separating 

a whole number from fraction; and 𝛼4 - borrowing one from a whole number to fraction; * indicates 

a modified attribute specification. 
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The results of the fraction-subtraction data obtained from the IMSSA were compared 

to the QRM. The IMSSA suggested attribute changes in seven items (i.e., items 1, 3, 4, 7, 8, 9, 

and 10) when 𝜀(1) = 0.50; whereas, the QRM suggested attribute changes in three items (i.e., 

items 1, 10, and 11). Based on the IMSSA, the result indicated that item 1 (i.e., 
3

4
−

3

8
) should 

require two more attributes (i.e., 𝛼2 and 𝛼3) in addition to 𝛼1. This suggestion may have 

occurred because this item requires more than just 𝛼1, performing a basic fraction subtraction 

problem. Another suggestion was for item 3 (i.e., 
6

7
−

4

7
), where 𝛼2 was deemed required. Items 

4 (i.e., 3
7

8
− 2), 8 (i.e., 3

4

5
− 3

2

5
), 9 (i.e., 4

5

7
− 1

4

7
), and 10 (i.e., 7

3

5
−

4

5
) required 𝛼2 in addition 

to 𝛼1and 𝛼3. Note that another strategy for solving the problem in one of these four items – 

borrowing one from a whole number to fraction, performing a basic fraction, and 

simplifying/reducing – happens to give the correct answer. The following example shows 

another strategy to solve item 9:  

 

4
5

7
− 1

4

7
=

(4 × 7) + 5

7
−

(1 × 7) + 4

7
 

   

=
33 − 11

7
=

22

7
= 3

1

7
 . 

 

Another attribute suggestion (i.e., 𝛼3) was for item 7 (i.e., 
11

8
−

1

8
) on the top of 𝛼1 and 

𝛼2. Similar to the preceding example, a different strategy – separating a whole number from 

fraction, performing a basic fraction subtraction operation, and simplifying/reducing – could 

also give the correct answer to item 7, as in,  

 
11

8
−

1

8
= 1

3

8
−

1

8
= 1

3 − 1

8
 

   

= 1
2

8
= 1

1

4
 . 

 

In applying the QRM, Chiu (2013) found that item 4, which appears as item 2 in this 

study, did not require the possession of 𝛼3 to be correctly answered. In contrast, the QRM in 

this study suggested that 𝛼3 was necessary. An explanation could be because of the fact that 

Chiu (2013) used 20 items with 8 attributes. Whereas, the IMSSA indicated that the mastery 

of the third attribute was required to answer item 2 correctly. The QRM also suggested to 

include and exclude 𝛼2 in items 10 and 11, respectively.  

As demonstrated by the examples, a deeper analysis is needed. The IMSSA has more 1s 

than the QRM that can be controlled by adjusting the cut-offs. The cut-off values defined in 

the simulation study do not perfectly fit to the real data analysis in this case because it did not 

have a complete Q-matrix. The latter values were just approximations based on the conditions 

defined in the simulation study. Further discussions about multiple strategies in cognitive 

diagnosis using the fraction subtraction data can be found in de la Torre and Douglas (2008), 

Hou and de la Torre (2014), and Mislevy (1996). Other reasons could be because the fraction 

subtraction data have fewer number of items and attributes than the simulation study. Also note 

that when 𝜀(1) was set at 0.60, three items presented different attribute specifications (i.e., items 

1, 2, and 3). 𝛼3 in item 1, and 𝛼2, 𝛼3, and 𝛼4 in item 2 were altered to 0s; however attribute 

specifications in item 3 was consistent with the Q-matrix given for the data.    
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7. DISCUSSION AND CONCLUSION 

CDMs aim to classify the attribute mastery or nonmastery of examinees, and the Q-

matrix is needed for specifying required attributes for each item in a test. The importance of 

revising attribute specifications in the Q-matrix should not be underestimated due to the 

inherent subjectivity of domain experts, consequently resulting in serious validity concerns. 

The IMSSA for Q-matrix validation presented in this study aimed to extend the SSA (de 

la Torre, 2008) in several ways. First, it offered a more efficient solution as it only examines 

the first K single-attribute q-vectors. Second, in addition to less number of computational 

requirements, an iterative algorithm was included in the method to decrease negative effects of 

any misspecified attribute specification given in the previous iteration. And, third, an 

approximation was made to generally define optimal cut-off values applicable across the 

specific set of conditions.  

In this work, three methods without an iterative algorithm were compared to two methods 

with an iterative algorithm. Among the noniterative methods, the MSSA reported better results, 

which had higher recovery than the QRM on average across all the factors. As expected, the 

results showed that the IMSSA worked much better than the noniterative methods. According 

to the simulation studies, the IMSSA showed promising improvements in Q-matrix validation 

that could enhance the estimation of model parameters, model-data fit analyses, and ultimately, 

the accuracy of attribute-classifications.  

Using a 3.50-GHz I7 computer, it took the code the least amount of time to run the 

validation procedures for MSSA, followed by IMSSA, ESA, SSA, and QRM. For instance, it 

took 1.64, 3.11, 9.89, 24.35, and 30.00 minutes using MSSA, IMSSA, ESA, SSA, and QRM 

procedures, respectively, for 100 iterations under the condition in that N = 2,000, J = 30, and 

medium quality items with 10% misspecifications in the Q-matrix.  

This present study had some limitations. For instance, the number of attributes was 

assumed to be known and fixed to K = 5. It would be interesting to investigate the method by 

relaxing this assumption. The findings of this study were based on the attribute structure 

generated from a uniform distribution. The performance of the methods should be investigated 

under a condition where attributes were generated from a higher order distribution (de la Torre 

& Douglas, 2004). Also, in addition to the δ-statistic used in this study, other statistics can be 

carried out for Q-matrix validation. This study should also be extended to make it applicable 

to a wider class of CDMs such as the G-DINA model (de la Torre, 2011). This will obviate the 

need to assume the specific CDMs involved. Finally, this method should be applied to other 

real data sets (e.g., Akbay, Terzi, Kaplan, & Karaaslan, 2018) with a complete Q-matrix so that 

further insights can be gained on how the proposed method could work in practice.  
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