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Elliptic Quaternion and Elliptic linear Interpolation 

Highlights 

 linear elliptic interpolation (Elerp)  

 spline elliptic quaternion interpolation (Esquad) 

 cubic interpolation out of three linear interpolations  

 consistently and continually differentiable Esquad 

 interpolation between a series of position and direction interpolations on the ellipsoid. 

 

Graphical Abstract 

Elliptic quaternion interpolation between the four key frames on ellepsoid. 

 

 
Figure. An illustration of the study 

 

Aim 

Aim of this work is to seamlessly interpolate between a series of position and direction 

interpolations on the ellipsoid.  

Design & Methodology 

Idea is to make a choice between 𝑠𝑛 and 𝑠𝑛+1 elliptic quaternions in order to allow control of 

endpoint derivatives in spline segments. Thus, we showed that ESquad is consistently and 

continuously differentiable across all segments. 

Originality 

In this paper, we have been done elliptic quaternion linear interpolation on ellipsoid using 

elliptic quaternions. 

Findings 

We showed that ESquad is consistently and continuously differentiable across all segments.We 

seamlessly interpolated between a series of position and direction interpolations on the ellipsoid. 

Conclusion 

We presented the spline elliptic quaternion interpolation on the ellipsoid in this paper. 
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Elliptic Quaternion and Elliptic linear Interpolation  
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ABSTRACT 

Spherical spline quaternion interpolation has been done on sphere in Euclidean space using quaternions. In this paper, we have 

been done elliptic quaternion linear interpolation on ellipsoid using elliptic quaternions. This interpolation curve is called Elerp 

elliptic linear interpolation. In addition, ESquad (spline elliptic quaternion interpolation) is defined by using the group structure 

feature of elliptic quaternion on ellipsoid. 

Keywords: Quaternions, elliptic quaternions, interpolation, euclidean space, elerp, spline, esquad.  

1. INTRODUCTION 

Quaternions were described by William Rowan Hamilton 

in 1843. Quaternions with non-commutative real algebra 

structure have a similar structure to complex numbers 

since they carry  most of the properties of complex 

numbers. Nowadays, quaternions are used especially in 

optimization problems involving physics, kinematics, 

computer graphics, animation and rigid body 

transformations. Shoemak [10] defined the geodesic 

curve between two points on the sphere with the help of 

quaternions, and this is called the spherical linear 

interpolation Slerp on the sphere. In terms of differential 

geometry, great arcs are segments of geodesic curves on 

the sphere. Slerp not only creates great arcs on the unit 

sphere, but also creates the shortest arcs. Thus, Slerp 

gives the interpolation path using the shortest arc 

between two quaternions on the unit sphere. Robot 

kinematics and computer games are covered extensively 

in Slerp notation. Especially in recent years, spherical 

interpolation and interpolations in Minkowski space and 

ellipsoid space have an important place in animation and 

modeling of robot movements in 3-dimensional 

computer games [12]. Also, interpolation between two 

rotations (slerp) is optimal. But when interpolating 

between a number of rotations, the following issue 

appears:  

 At the control points, the curve is not smooth. Smooth 

interpolation is used in computer animation to model 

motion solids, cameras, and lights [7,12]. The work done 

so far using quaternions has been interpolated on the 

Euclidean sphere, Lorentz and Hyperbolic spheres [4, 

11]. In this study, interpolations is made on the ellipsoid 

using the elliptic quaternions. Also, the aim of this work 

is to seamlessly interpolate between a series of position 

and direction interpolations on the ellipsoid.  

 

2.  MATERIAL AND METHOD 

In the proposed method, the curve is not smooth at the 

control points in a series of rotations. This smoothness 

issue is not easy to solve. Similarly, interpolation is easy 

with a straight line in the plane between two points. But 

even in simple Euclidean space it is complicated to 

properly interpolate a set of points. Typically, in the 

plane of cubic curves different types of interpolations 

between a set of control points are used. For a number of 

elliptic quaternion {𝑞𝑛}𝑛=0
𝑁−1 , the algorithmic expression 

for Esquad produces an interpolation curve. Under the 

conditions that the spline pass through the control points 

and that the derivatives are continuous, we introduced a 

spline structure that interpolated those elliptic 

quaternions. Idea is to make a choice between 𝑠𝑛 and 

𝑠𝑛+1 elliptic quaternions in order to allow control of 

endpoint derivatives in spline segments. Thus, we 

showed that ESquad is consistently and continuously 

differentiable across all segments. In other words, we 

seamlessly interpolated between a series of position and 

direction interpolations on the ellipsoid.  

 

3.   ELLIPTIC QUATERNIONS 

With the help of a little generalization in real quaternions, 

it is possible to examine the rotation and interpolation on 

the elliptic instead of the sphere. For this purpose, the dot 

product and the vector product must be defined in 

accordance with the metric that accepts the elliptic 

sphere. For each elliptic, a corresponding quaternion can 

be defined. We will call this quaternion the elliptic 

quaternion. Elliptic quaternions are a 2-dimensional 

vector space on the set of elliptic numbers and a 4-

dimensional vector space on the set of real numbers [13].  

In the 𝑅3 space, 𝑎1, 𝑎2, 𝑎3 ∈ 𝑅+ 

𝐸: 𝑥2 + 𝑎2𝑦
2 + 𝑎3𝑧

2 = 1                               

Consider the ellipsoid and denote it with  √𝑎1𝑎2𝑎3 = ∆ 

𝐻𝑎1,𝑎2,𝑎3
= {𝑞1 + 𝑞2𝑖 + 𝑞3𝑗 + 𝑞4𝑘: 𝑞𝑖 ∈ 𝑅, 𝑖2 =

−𝑎1, 𝑗
2 = −𝑎2, 𝑘

2 = −𝑎3, 𝑖𝑗𝑘 = −∆}               (1)
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The set that is not commutative, but associative, defined 

in its form, is called the set of elliptic quaternions 

corresponding to the ellipsoid ” E”.   

 

4. ELLIPTIC DOT PRODUCT AND VECTOR 

PRODUCT OF AN ELLIPSOID  

The dot product of an 𝐸: 𝑎1𝑥
2 + 𝑎2𝑦

2 + 𝑎3𝑧
2 = 1  

ellipsoid 𝑣 = 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘  and 𝑤 = 𝑤1𝑖 + 𝑤2𝑗 +
𝑤3𝑘 in the form of  

𝛽(𝑣, 𝑤) = 𝑎1𝑣1𝑤1 + 𝑎2𝑣2𝑤2 + 𝑎3𝑣3𝑤3                     (2)  

the elliptic vector product is also defined as [13] 

𝜗(𝑣 × 𝑤) = ∆ |

−𝑖
𝑎1

⁄
𝑗

𝑎2
⁄ 𝑘

𝑎3
⁄

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

|                              (3) 

Definition 1. For the elliptic set of quaternions 𝐻𝑎1,𝑎2,𝑎3
 

and 𝑝, 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
 Elliptic quaternion product of         

𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4) and 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) elliptic 

quaternions [13] is defined as, 

𝑝𝑞 = 𝑝1𝑞1 − 𝛽(𝑣𝑝, 𝑣𝑞) + 𝑝1𝑣𝑞 + 𝑞1𝑣𝑝 + 𝜗(𝑣𝑝 × 𝑣𝑞)(4) 

Definition 2. For the elliptic set of quaternions 𝐻𝑎1,𝑎2,𝑎3
 

and 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
 and 𝑞 = 𝑆𝑞 + 𝑉𝑞 , 𝑆𝑞 = 0, then q is 

called a purely elliptic quaternion. The product of two 

purely elliptic quaternions [13] is expressed as, 

 𝑝𝑞 = −𝛽(𝑣𝑝, 𝑣𝑞) + 𝜗(𝑣𝑝 × 𝑣𝑞) 

        = −(𝑎1𝑝2𝑞2 + 𝑎2𝑝3𝑞3 + 𝑎3𝑝4𝑞4) +

∆ |
𝑖 𝑎1⁄ 𝑗 𝑎2⁄ 𝑘 𝑎3⁄
𝑝2 𝑝3 𝑝4

𝑞2 𝑞3 𝑞4

|                                                 (5)  

 

Definition 3. 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) = 𝑆𝑞 +

𝑉𝑞 being an elliptic quaternion, quaternion conjugate and 

norm and inverse, are respectively defined as, 

 

𝑞̅ =  𝑆𝑞 − 𝑉𝑞                                                                      (6) 

𝑞̅ = 𝑞1 − 𝑞2 − 𝑞3 − 𝑞4                                                             (7) 

𝑁𝑞 = ‖𝑞‖ 

= √𝑞𝑞̅ = √𝑞𝑞̅̅ ̅ = √𝑞1
2 + 𝑎1𝑞2

2 + 𝑎2𝑞3
2 + 𝑎3𝑞4

2              (8) 

𝑞−1 =
𝑞̅

‖𝑞‖2 , 𝑁𝑞 ≠ 0                                                          (9) 

In addition, if 𝑁𝑞 = 1, then q units are called elliptic 

quaternions [13][14]. 

 

Definition 4. Elleptic quaternions can be expressed in 

polar form as well as complex numbers and quaternions. 

cos 𝜑 =
𝑞1

‖𝑞‖
  𝑣𝑒 sin 𝜑 =

√𝑎1𝑞2
2+𝑎2𝑞3

2+𝑎3𝑞4
2

‖𝑞‖
                     (10)    

can be written in the form of, 

𝑞 = ‖𝑞‖(cos 𝜑 + 𝑚𝑠𝑖𝑛𝜑)                                     (11) 

Here 

𝑚 =
(𝑞2,𝑞3,𝑞4)

√𝑎1𝑞2
2+𝑎2𝑞3

2+𝑎3𝑞4
2
                                              (12) 

Vector m is a unit vector in the space 𝑅3 with dot product 

β. In addition, this vector is 𝑚2 = −1 according to the 

product of the elliptic quaternion [13].  

Theorem 1. Each 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
 𝑞 = 𝑞1 + 𝑞2𝑖 +

𝑞3𝑗, 𝑞4𝑘 = (cos 𝜑 + 𝑚𝑠𝑖𝑛𝜑) Elliptic unit quaternion 

corresponds to a rotational motion on the ellipsoid  

𝑎1𝑥
2 + 𝑎2𝑦

2 + 𝑎3𝑧
2 = 1  .                                        (13) 

The dot product of this ellipsoid is 𝛽𝑎1,𝑎2,𝑎3
. 

For a point 𝑏 on this ellipsoid, the linear transformation      

𝑅𝑞(𝑏) = 𝑞𝑏𝑞−1                                                           (14) 

indicates an elliptic rotation by angle 2𝜑 on the plane 

perpendicular to the m-axis with respect to the dot 

product of 𝛽𝑎1,𝑎2,𝑎3
 [13].  

 

5.  RESULTS AND DISCUSSION 

Elerp (Elliptic Linear Interpolation) 

In this section, interpolation is calculated on the ellipsoid. 

This interpolation is done using elliptic quaternions. 

These interpolation curves are defined as linear elliptic 

interpolation (Elerp) and spline elliptic quaternion 

interpolation (Esquad).  

Definition 5. Let's take 𝑞 = [𝑐𝑜𝑠 𝜑 ,𝑚 𝑠𝑖𝑛 𝜑] ∈
𝐻𝑎1,𝑎2,𝑎3

and 𝑚 ∈ 𝑅3. In this case, the logarithm m 

function is defined as, 

 𝑙𝑜𝑔 𝑞 ≡ [0, 𝜑𝑚]                                                     (15) 

Lema 1. Let's take = [𝑐𝑜𝑠 𝜑 ,𝑚 𝑠𝑖𝑛 𝜑] ∈ 𝐻𝑎1𝑎2𝑎3
and 

n ∈ 𝑅  . In this case 

 
𝑑

𝑑𝑛
𝑞𝑛 = 𝑞𝑛 𝑙𝑜𝑔(𝑞)                                                     (16) 

Lema 2. Let's take 𝑞 ∈ 𝐶1(𝑅, 𝐻𝑎1𝑎2𝑎3
),  𝑟 ∈ 𝐶1(𝑅, 𝑅). 

In this case 𝑞(𝑡) = [𝑐𝑜𝑠  𝜑 (𝑡),  𝑚(𝑡) 𝑠𝑖𝑛 𝜑 (𝑡)]. So  
𝑑

𝑑𝑡
𝑞(𝑡)𝑟(𝑡) =

[
𝑠𝑖𝑛(𝑟(𝑡)𝜑(𝑡)) (𝑟 ′(𝑡)𝜑(𝑡) +  𝑟(𝑡)𝜑 ′(𝑡)) , 𝑐𝑜𝑠(𝑟(𝑡)𝜑(𝑡))

(𝑟 ′(𝑡)𝜑(𝑡) +  𝑟(𝑡)𝜑 ′(𝑡))  𝑚(𝑡) + 𝑠𝑖𝑛(𝑟(𝑡)𝜑(𝑡)) 𝑚′(𝑡)
]

(17) 

Description 6. The product of 𝑝−1𝑞 eleptic quaternions 

can be greatly simplified by using the elliptic unit 

quaternions 𝑤 = [𝑐𝑜𝑠𝜑,𝑚 sin𝜑] and 𝑤𝑡 =
[cos 𝑡𝜑 ,𝑚 sin 𝑡𝜑]. 
 

Definition 7. The elliptic quaternion used for a rotation 

denoted by p and ending in q is 𝑝, 𝑞 ∈ 𝐻𝑎1𝑎2𝑎3
   

, 𝑞 =   𝑝(𝑝−1𝑞)𝑛. So 𝐸𝑙𝑒𝑟𝑝 (𝑝, 𝑞, 𝑛) is expressed 

𝐸𝑙𝑒𝑟𝑝 (𝑝, 𝑞, 𝑛) = 𝑝(𝑝−1𝑞)𝑛,   𝑛 ∈ [0,1]                   (18) 

 

Lema 3. Let 𝑝, 𝑞 ∈ 𝐻𝑎1𝑎2𝑎3
. In this case, 

𝐸𝑙𝑒𝑟𝑝(𝑝, 𝑞, 𝑛), 𝑛 ∈ [0,1] forms a great arc with the 



 

 

shortest length on the ellipsoid between p and q unit 

elliptic quaternions. 

 

Lema 4. When p and q are two-unit elliptical quaternions 

on various elliptic surfaces, 𝑝 ∈ 𝐻𝑎1𝑎2𝑎3
 and 𝑞 ∈

𝐻𝑏1𝑏2𝑏3
; then the product of elliptic quaternions cannot 

describe the structure of the associated rotation. Each 

elliptic quaternion has a unique scalar product space, 

which causes variations in the elliptic quaternion product. 

The unit elliptic quaternions create the shortest great arc 

on the ellipse, according to the interpolation curve for 

elliptic linear interpolation. Elerp, which also has a scalar 

parameter n that indicates how far to interpolate between 

two elliptic quaternion turns, p and q, is typically thought 

to be the best interpolation curve between them. (Where 

n is a real number, n=0 gives us p, n=1 gives us q, and 

intermediate values of n give us the elliptic quaternions 

on the path between p and q). It should be noted that Elerp 

only permits interpolation between two rotations. It is 

required to take into account several, difficult 

interpolations when taking into account more than two 

rotations. 

Definition 8. Definition of Elerp for the elliptic 

quaternion 𝑝, 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
,, used for a rotation denoted 

by the initial p and ending with q can be given as, 

𝐸𝑙𝑒𝑟𝑝(𝑝, 𝑞, 𝑛) =
𝑝 𝑠𝑖𝑛((1−𝑛)𝜑)+𝑞 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛(𝜑)
  

𝑝, 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
,  𝑛 ∈ [0,1]                                         (19) 

Here, 𝑝 ∙ 𝑞 = cos𝜑. 

Remark 2. Elerp for unit eleptic quaternions is written 

as, 

𝐸𝑙𝑒𝑟𝑝(𝑝, 𝑞, 𝑛) = 𝑝(𝑝−1𝑞)𝑛                                             (20) 

Proof: 

 𝑞 = 𝑝(𝑝−1𝑞)𝑛                                                                      (21) 

Which is 𝑝−1, 𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3
,, then 𝑝−1𝑞 ∈ 𝐻𝑎1,𝑎2,𝑎3

. In 

this case 

 𝑝−1𝑞 = 𝑐𝑜𝑠 𝜑 + 𝑚 𝑠𝑖𝑛 𝜑                                                (22) 

 The angle between p and q is shown here as φ. So that 

the adjustment of p  changes evenly along the great arc 

between p and q, parameter n can be introduced into the 

angle.  

In that case, 

𝑞(𝑛) = 𝑝[𝑐𝑜𝑠(𝑛𝜑) + 𝑚 𝑠𝑖𝑛(𝑛𝜑)] = 𝑝[𝑐𝑜𝑠 𝜑 +
𝑚 𝑠𝑖𝑛 𝜑]𝑛 = 𝑝(𝑝−1𝑞)𝑛                                                             (23)   
𝑝 𝑠𝑖𝑛((1−𝑛)𝜑)

𝑠𝑖𝑛 𝜑
=

𝑝(𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠(𝑛𝜑)−𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛(𝑛𝜑))

𝑠𝑖𝑛 𝜑
 

         = 𝑝 𝑐𝑜𝑠(𝑛𝜑) −
𝑝 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
                   (24) 

According to equation (22)  

 
𝑞 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
=

𝑝(𝑐𝑜𝑠 𝜑+𝑚 𝑠𝑖𝑛 𝜑) 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
 

    =
𝑝 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
+

𝑝𝑚 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
                     (25) 

Adding the equations' sides (24) and (25) 
𝑝 𝑠𝑖𝑛((1−𝑛)𝜑 )+𝑞 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛(𝜑)
= 𝑝 𝑐𝑜𝑠(𝑛𝜑) −

𝑝 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
+

𝑝 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
+

𝑝𝑚 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛(𝑛𝜑)

𝑠𝑖𝑛 𝜑
    

In this case 

𝑝 𝑠𝑖𝑛ℎ((1−𝑛)𝜙)+𝑞 𝑠𝑖𝑛ℎ(𝑛𝜙)

𝑠𝑖𝑛ℎ(𝜙)
= 𝑝[𝑐𝑜𝑠 𝜑 + 𝑚 𝑠𝑖𝑛 𝜑]𝑛 =

𝑝(𝑝−1𝑞)𝑛                                                                     (26) 

Equation (23) is a simple application of Elerp's derivative 

(16), 

 𝐸𝑙𝑒𝑟𝑝′(𝑝, 𝑞, 𝑛) = 𝑝(𝑝−1𝑞)𝑛 𝑙𝑜𝑔(𝑝−1𝑞).                    (27) 

 

 
Figure 1. MATLAB Programming Language simulates the 

interpolation shapes.  

 50 interpolated frames make up the interpolation 

curve between two elleptic quaternions on the 

ellepsoid  

Over a Series of Rotations, Interpolation 

The best interpolation is between two rotations (Elerp). 

But when a series of rotations are interpolated, the curve 

is not smooth at the control points.  

Continuity throughout the entire interpolation can easily 

be achieved with a reparametrization. Since the 

interpolation parameter is actually transformed into a 

sequence of discrete frames in between each pair of key 

frames, reparametrization actually refers to figuring out 

how many frames should be included in each interval 



 

 

based on the interval's size. The size of an interval can be 

measured by the angle 𝑐𝑜𝑠 𝜑 = 𝑞𝑖 ⋅ 𝑞𝑖+1  between two 

pairs of key frames 𝑞𝑖 and 𝑞𝑖+1. (see figure 2). 

 

(a) 

 

 

 

(b) 

Figure 2. There are 50 interpolated frames in an elliptic 

quaternion interpolation between four key frames;  

 

This smoothness issue is not easy to solve. Similarly, the 

interpolation it is easy with a straight line in the plane 

between the points. However, it is challenging to 

correctly interpolate a set of points even in simple 

Euclidean space. Different types are typically used in 

interpolations between a set of control points in the plane 

of cubic curves. In quaternion space three linear 

interpolations should be used to create a cubic 

interpolation. A quantity determined by the logistic 

equation 2𝑛(1 − 𝑛) is interpolated between the initial 

data point and two additional (well chosen) points, 

followed by the remaining points. If auxiliary points are 

selected properly their continuity can be achieved. A 

cubic elliptic interpolation (unit elieptic quaternion) 

between data points of the esquad function is determined 

by the points 𝑞1 and 𝑞2 and the quantity 𝑛 ∈ [0,1] as 

follows. 
 𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖 , 𝑞𝑖+1, 𝑠𝑖 , 𝑠𝑖+1, 𝑛) = 
𝐸𝑙𝑒𝑟𝑝(𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛), 𝐸𝑙𝑒𝑟𝑝(𝑠𝑖 , 𝑠𝑖+1, 𝑛),2𝑛(1 − 𝑛))  (28) 

The 𝑠𝑖 and 𝑠𝑖+1 inner quadrangle points are called inner 

quadrangle points and thus these points must be chosen 

carefully to ensure the continuity in the segments.  

 

Spline Interpolation of Elliptic Quaternion 

Considering the algorithmic expression for the esquad is 

a set of {𝑞𝑛}𝑛=0
𝑁−1  eleptic unit quaternions, we want to 

construct a spline curve by interpolating the eleptic 

quaternion with conditions whose derivatives are 

continuous and pass through control points. Idea is to 

make a choice between 𝑠𝑖  and 𝑠𝑖+1  elliptic quaternions to 

allow control of endpoint derivatives in spline segments.  

Easily with squad definition 

 𝑅𝑖(𝑛) = 𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖 , 𝑞𝑖+1, 𝑠𝑖 , 𝑠𝑖+1, 𝑛) = 
𝐸𝑙𝑒𝑟𝑝(𝐸𝑙𝑒𝑟𝑝 (𝑞𝑖 , 𝑞𝑖+1, 𝑛), 𝐸𝑙𝑒𝑟𝑝(𝑠𝑖 , 𝑠𝑖+1, 𝑛),2𝑛(1 −
𝑛))                                                                                 (29) 

𝑅𝑖−1(1) = 𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖−1, 𝑞𝑖 , 𝑅𝑖−1, 𝑅𝑖 , 1) =
𝐸𝑙𝑒𝑟𝑝(𝐸𝑙𝑒𝑟𝑝(𝑞𝑖−1, 𝑞𝑖 , 1), 𝐸𝑙𝑒𝑟𝑝(𝑅𝑖−1, 𝑅𝑖 , 1), 0) = 𝑞𝑖 

𝑅𝑖(0) = 𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖 , 𝑞𝑖+1, 𝑅𝑖 , 𝑅𝑖+1, 0)
= 𝐸𝑙𝑒𝑟𝑝(𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 0), 𝐸𝑙𝑒𝑟𝑝(𝑅𝑖 , 𝑅𝑖+1, 0), 0) = 𝑞𝑖 

𝑅𝑖−1(1) = 𝑞𝑖 = 𝑅𝑖(0) 

is displayed. Thus Esquad is continuous and has an 

accurate value at checkpoints. To match derivatives of 

two successive spline segments, endpoints to obtain 

continuous derivatives 

𝑅𝑖−1
′ (1) = 𝑅𝑖

′(0)                                                                     (30) 

We will now show that the Esquad is not consistently 

differentiable at controlpoints. 

𝐸𝑙𝑒𝑟𝑝(𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛), 𝐸𝑙𝑒𝑟𝑝(𝑠𝑖 , 𝑠𝑖+1, 𝑛),2𝑛(1 − 𝑛)) 

𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛) (
𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛)−1

𝐸𝑙𝑒𝑟𝑝(𝑠𝑖 , 𝑠𝑖+1, 𝑛)
)

2𝑛(1−𝑛)

 

 𝑔𝑖(𝑛) = 𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛)−1𝐸𝑙𝑒𝑟𝑝(𝑠𝑖 , 𝑠𝑖+1, 𝑛)          (31) 

Here 𝑔𝑖(𝑛) is the unit elliptic quaternion, so 𝑔𝑖(𝑛) can be 

written as, 

𝑔𝑖(𝑛) = [𝑐𝑜𝑠( 𝜑𝑔𝑖(𝑛)), 𝑠𝑖𝑛(𝜑𝑔𝑖(𝑛))𝑚𝑔𝑖(𝑛)]                  (32) 

We will now demonstrate that Esquad is continuously 

differentiable at controlpoints. 

𝑅𝑖(𝑛) = 𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖 , 𝑞𝑖+1, 𝑠𝑖 , 𝑠𝑖+1, 𝑛)                              (33) 

𝑅𝑖
′(𝑛) = 𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖 , 𝑞𝑖+1, 𝑠𝑖 , 𝑠𝑖+1)

=
𝑑

𝑑𝑛
𝐸𝑙𝑒𝑟𝑝(𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛), 𝐸𝑙𝑒𝑟𝑝(𝑠𝑖 , 𝑠𝑖+1, 𝑛),2𝑛(1

− 𝑛)) =
𝑑

𝑑𝑛
(𝐸𝑙 𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛)𝑔𝑖(𝑛)2𝑛(1−𝑛)) 

= (
𝑑

𝑑𝑛
(𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛))) 𝑔𝑖(𝑛)2𝑛(1−𝑛) +

𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 𝑛) (
𝑑

𝑑𝑛
𝑔𝑖(𝑛)2𝑛(1−𝑛))                           (34) 

Using equation (32)  



 

 

𝑑

𝑑𝑛
𝑔𝑖(𝑛)2𝑛(1−𝑛)

=

[
 
 
 
 𝑠𝑖𝑛(2𝑛(1 − 𝑛)𝜑𝑔𝑖(𝑛)) ((2 − 4𝑛)𝜑𝑔𝑖(𝑛) + 2𝑛(1 − 𝑛)𝜑𝑔𝑖

′(𝑛)) ,

𝑐𝑜𝑠(2𝑛(1 − 𝑛)𝜑𝑔𝑖(𝑛)) ((2 − 4𝑛)𝜑𝑔𝑖(𝑛) + 2𝑛(1 − 𝑛)𝜑𝑔𝑖
′(𝑛)) 𝑚𝑔𝑖(𝑛)

+𝑠𝑖𝑛(2𝑛(1 − 𝑛)𝜑𝑔𝑖(𝑛))𝑚𝑔𝑖
′(𝑛) ]

 
 
 
 

 

𝑑

𝑑𝑛
𝑔𝑖−1(𝑛)2𝑛(1−𝑛)|𝑛 = 1

=

[
 
 
 
 𝑠𝑖𝑛(2 ∙ 1(1 − 1)𝜑𝑔𝑖−1(1)) ((2 − 4 ∙ 1)𝜑𝑔𝑖−1(1) + 2 ∙ 1(1 − 1)𝜑𝑔𝑖−1

′ (1)) ,

𝑐𝑜𝑠(2 ∙ 1(1 − 1)𝜑𝑔𝑖−1(1)) ((2 − 4 ∙ 1)𝜑𝑔𝑖−1(1) + 2 ∙ 1(1 − 1)𝜑𝑔𝑖−1
′ (1)) 𝑚𝑔𝑖(𝑛)

+ 𝑠𝑖𝑛(2 ∙ 1(1 − 1)𝜑𝑔𝑖−1(1))𝑚𝑔𝑖−1
′ (1) ]

 
 
 
 

 

𝑑

𝑑𝑛
𝑔𝑖−1(𝑛)2𝑛(1−𝑛)|𝑛 = 1 = [0, −2𝜙𝑔𝑖−1

(1)𝜀𝑔𝑖−1
(1)] 

𝑑

𝑑𝑛
𝑔𝑖(𝑛)2𝑛(1−𝑛)|𝑛 = 0

=

[
 
 
 
 𝑠𝑖𝑛(2 ⋅ 0(1 − 0)𝜑𝑔𝑖(0)) ((2 − 4 ⋅ 0)𝜑𝑔𝑖(0) + 2 ⋅ 0(1 − 0)𝜑𝑔𝑖

′(0)) ,

𝑐𝑜𝑠(2 ⋅ 0(1 − 0)𝜑𝑔𝑖(0)) ((2 − 4 ⋅ 0)𝜑𝑔𝑖(0) + 2 ⋅ 0(1 − 0)𝜑𝑔𝑖
′(0)) 𝑚𝑔𝑖(0)

+𝑠𝑖𝑛(2 ⋅ 0(1 − 0)𝜑𝑔𝑖(0))𝑚𝑔𝑖
′(0) ]

 
 
 
 

 

𝑑

𝑑𝑛
𝑔𝑖(𝑛)2𝑛(1−𝑛)|𝑛 = 0 = [0,2𝜑𝑔𝑖

(0)𝑚𝑔𝑖
(0)] 

using equation (34), we get:  
𝑑

𝑑𝑡
𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖−1, 𝑞𝑖 , 𝑠𝑖−1, 𝑠𝑖 , 1) = 

𝐸𝑙𝑒𝑟𝑝(𝑞𝑖−1, 𝑞𝑖 , 1) 𝑙𝑜𝑔(𝑞𝑖−1
−1 , 𝑞𝑖)

+ 𝐸𝑙𝑒𝑟𝑝(𝑞𝑖−1, 𝑞𝑖 , 1) (
𝑑

𝑑𝑛
𝑔𝑖(𝑛)2𝑛(1−𝑛)|𝑛 = 1) = 

𝑞𝑖 𝑙𝑜𝑔(𝑞𝑖−1
−1 , 𝑞𝑖) + 𝑞𝑖[0,−2𝜑𝑖−1(1)𝑚𝑔𝑖−1

(1)] = 

𝑞𝑖 (𝑙𝑜𝑔(𝑞𝑖−1
−1 , 𝑞𝑖) −

2 𝑙𝑜𝑔 ( [𝑐𝑜𝑠 (𝜑𝑔𝑖−1
(1)) , 𝑠𝑖𝑛 (𝜑𝑔𝑖−1

(1))𝑚𝑔𝑖−1
(1)] )) =

𝑞𝑖(𝑙𝑜𝑔(𝑞𝑖−1
−1 , 𝑞𝑖) − 2 𝑙𝑜𝑔(𝑔𝑖−1(1))) =

𝑞𝑖(𝑙𝑜𝑔(𝑞𝑖−1
−1 , 𝑞𝑖) − 2 𝑙𝑜𝑔(𝑞𝑖

−1𝑠𝑖))                             (35) 

 
𝑑

𝑑𝑡
𝐸𝑠𝑞𝑢𝑎𝑑(𝑞𝑖 , 𝑞𝑖+1, 𝑠𝑖 , 𝑠𝑖+1, 0) =

 𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 0) 𝑙𝑜𝑔(𝑞𝑖
−1, 𝑞𝑖+1) +

𝐸𝑙𝑒𝑟𝑝(𝑞𝑖 , 𝑞𝑖+1, 0) (
𝑑

𝑑𝑛
𝑔𝑖(𝑛)2𝑛(1−𝑛)|𝑛 = 0) =

𝑞𝑖 𝑙𝑜𝑔(𝑞𝑖
−1, 𝑞𝑖+1) + 𝑞𝑖[0,2𝜑𝑖(0)𝑚𝑔𝑖

(0)] =

𝑞𝑖 (𝑙𝑜𝑔(𝑞𝑖
−1, 𝑞𝑖+1) +

2 𝑙𝑜𝑔 ( [𝑐𝑜𝑠 (𝜑𝑔𝑖
(0)) , 𝑠𝑖𝑛 (𝜑𝑔𝑖

(0))𝑚𝑔𝑖
(0)] )) =

𝑞𝑖(𝑙𝑜𝑔(𝑞𝑖
−1, 𝑞𝑖+1) + 2 𝑙𝑜𝑔(𝑔𝑖(0))) =

𝑞𝑖(𝑙𝑜𝑔(𝑞𝑖
−1, 𝑞𝑖+1) + 2 𝑙𝑜𝑔(𝑞𝑖

−1𝑠𝑖))                 (36) 

 using equation (35) and (36) 𝑠𝑖 must satisfy 
𝑞𝑖 𝑙𝑜𝑔( (𝑞𝑖−1

−1 , 𝑞𝑖) − 2 𝑙𝑜𝑔(𝑞𝑖
−1𝑠𝑖)

= 𝑞𝑖 𝑙𝑜𝑔( (𝑞𝑖
−1, 𝑞𝑖+1) + 2 𝑙𝑜𝑔(𝑞𝑖

−1𝑠𝑖) 

𝑠𝑖 = 𝑞𝑖 𝑒𝑥𝑝 (−
𝑙𝑜𝑔(𝑞𝑖

−1𝑞𝑖−1) + 𝑙𝑜𝑔(𝑞𝑖
−1𝑞𝑖+1)

4
) 

 

𝑠𝑖  is obtained.  

As a result, using the above definition of 𝑠𝑖, Esquad is 

continuously differentiable at control points. In reality, 

we've demonstrated that it differs throughout every 

Esquad section consistently and continually. 

(see figure 3). 

 

(a) 

 

(b) 

 

(c) 



 

 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 3. (a) elliptic quaternion interpolation between the four 

key frames on ellipsoid; (b) Inner quadrangle 

interpolation between the four key frames on 

ellipsoid; (c) Combination of elliptic quaternion and 

inner quadrangle on the ellipsoid; (d) other view 

Combination of elliptic quaternion and inner 

quadrangle on ellipsoid; (e) Smoothing elliptic 

quaternion with using inner quadrangle; (f) 

interpolation curve for ESquad; (g) other view 

interpolation curve for ESquad 

 

6. CONCLUSION 

We presented the spline elliptic quaternion interpolation 

on the ellipsoid in this paper. On the ellipsoid, elliptic 

quaternions have a group structure. The ESquad (spline 

elliptic quaternion interpolation) is defined on the 

ellipsoid using these features. The suggested technique 

consists of building a cubic interpolation out of three 

linear interpolations. For a collection of elliptic 

quaternions {𝑞𝑛}𝑛=0
𝑁−1, the algorithmic expression for 

ESquad yields an interpolation curve.  We have 

demonstrated how consistently and continually 

differentiable ESquad is across all segment. In other 

words, we seamlessly interpolated between a series of 

position and direction interpolations on the ellipsoid. 
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