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ABSTRACT

In the current article, we introduce and characterize a K-Ricci-Bourguignon almost solitons in
perfect fluid spacetimes and generalized Robertson-Walker spacetimes. First, we demonstrate that
if a perfect fluid spacetime admits a K-Ricci-Bourguignon almost soliton, then the integral curves
produced by the velocity vector field are geodesics and the acceleration vector vanishes. Then
we establish that if perfect fluid spacetimes permit a gradient K-Ricci-Bourguignon soliton with
Killing velocity vector field, then either state equation of the perfect fluid spacetime is presented
by p = 3−n

n−1σ , or the gradient K-Ricci-Bourguignon soliton is shrinking or expanding under some
condition. Moreover, we illustrate that the spacetime represents a perfect fluid spacetime and the
divergence of the Weyl tensor vanishes if a generalized Robertson-Walker spacetime admits a K-
Ricci-Bourguignon almost soliton.
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1. Introduction

Einstein’s “General Relativity" (GR) theory is commonly known as the gravitation theory of geometry. The
basic connection between the geometry of spacetime and physics has been established by GR which is a
significant physics theories of the last century. Over the past century, GR has been the field of greatest interest
in both mathematics and physics. Currently, one of the fascinating problems is attempting to solve Einstein’s
field equation (EFE) using a variety of methods.

The Minkowski spacetime, or Euclidean space R4 (4-dimension) with a Lorentzian metric, provides
the simplest solution to the aforementioned problem. The Kerr, de-Sitter, and Schwartzchild solutions are
additional non-trivial solutions. Warped product Lorentzian manifolds were extensively modified in GR
theory in order to obtain a general solution to EFEs. Two notable examples are standard static spacetime and
generalized Robertson-Walker spacetime (GRW).

According to GR, a spacetime is a Lorentzian manifold M4 with the signature (+,+,+,−) for the metric g
and admits a globally time-oriented vector. The idea of GRW spacetimes was created by Alias et al. [1]. The
Lorentzian manifold {Mn , n ≥ 3} is called a GRW spacetime if it is constructed as M = −I × ϱ2M∗. Here,
I ⊂ R, M∗ represents a Riemannian manifold of dimension (n− 1), and ρ > 0 is a scalar. It is claimed that ρ is
a scale factor or warping function. In the case where M∗ has dimension three and of constant curvature, the
GRW spacetime reduces to a Robertson-Walker (RW) spacetime. The features of GRW spacetimes are found in
([9], [10], [24]). The following theorem has been demonstrated by Mantica and Molinari [24].

Theorem A.([24]) A Lorentzian manifold {Mn , n ≥ 3} is a GRW spacetime if and only if it admits a unit
time-like torse-forming vector field: ∇Fu = Ψ[F +A(F )u], the one-form A is defined by g(F, u) = A(F ) for any
F which is also an eigenvector of the Ricci tensor.
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In a perfect fluid (PF ) spacetime the non-vanishing Ricci tensor S has the shape

S = a1g + b1η ⊗ η, (1.1)

where a1 and b1 represent scalars, ϱ is described by g(F, ϱ) = η(F ) for any F . Also, ϱ is a unit time-like vector
field of the PF spacetime that is, g(ϱ, ϱ) = −1.

Conversely, the Weyl tensor is important in relativity theory and geometry. Weyl tensors have been used by
several researchers to characterise spacetimes. Weyl or, conformal curvature tensor C is defined as

C(F,G)H = R(F,G)H

− 1

n− 2
[g(QG,H)F − g(QF,H)G

+g(G,H)QF − g(F,H)QG]

+
r

(n− 1)(n− 2)
[g(G,H)F − g(F,H)G],

in which R stands for the Riemann curvature tensor, r indicates the scalar curvature and the Ricci operator Q
is presented by g(QF,G) = S(F,G).

Furthermore, we see that

(divC)(F,G)H =
n− 3

n− 2
[{(∇FS)(G,H)− (∇GS)(F,H)} (1.2)

− 1

2(n− 1)
{(Fr)g(G,H)− (Gr)g(F,H)}],

‘div’ denotes the divergence.

Now, we state some theorems which are used in our article later on.

Theorem([20]) For a warped product M = −I × ρ2M∗, the fibers are Einstein if and only if div C = 0.

Theorem([26]) A GRW spacetime M is a PF spacetime if and only if M∗ is an Einstein manifold.

Previous two theorems jointly reveal that

Theorem B. A GRW spacetime is a PF spacetime if and only if div C = 0.

Theorem C.([25]) In a GRW spacetime (div C)(F,G)H = 0 if and only if

C(F,G)ϱ = 0

.

To determine EFEs, spacetime symmetries must be studied. Symmetry is a defining feature of geometry that
makes the physics clear. There are various symmetries in the geometry of spacetime and matter. In GR, they
are primarily used to classify solutions to EFEs. One kind of symmetry that incorporates the geometric flow
is called a soliton. In order to address the challenge of identifying a canonical metric on a smooth manifold,
Hamilton [21] introduces the Ricci and Yamabe solitons, which are subsequently examined in ([11], [12]).

A Riemannian manifold (Mn, g) is said to evolve by the Ricci-Bourguignon (RB) flow if g(t), a family of
metrices obeys the subsequent equation

∂g

∂t
= −2S − 2β1rg, (1.3)

in which S and r denote the Ricci tensor and scalar curvature respectively, and β1 is a real constant. Jean-Pierre
Bourguignon [5], depending on some unpublished work by Lichnerowicz and a publication by Aubin [2], was
the first to define the flow in the previous equation.

We define the following, analogous to the Ricci flow scenario:

Definition 1.1. A RB soliton [7] on a semi-Riemannian manifold (M, g) is described by

£V g + 2S + 2(λ1 + β1r)g = 0, (1.4)

in which £ stands for Lie-derivative and λ1 ∈ R.
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Here, we introduce a novel soliton, named K-Ricci-Bourguignon almost (K-RBA) soliton which is a
generalization of RB soliton, described by

K£V g + 2S + 2λ1g + 2β1rg = 0, (1.5)

where K, λ1 and β1 are scalars.
We notice that, the equation (1.5) is of specific importance for numerous values of β1, for instance

• K-Ricci almost soliton, for β1 = 0.
• K-Einstein almost soliton, for β1 = 1

2 .
• K-Schouten almost soliton, for β1 = 1

2(n−1) .

If V = Df , then the above stated notion is named gradient K-RBA soliton and equation (1.5) takes the shape

K∇2f + S + λ1g + β1rg = 0. (1.6)

For λ1 < 0, λ1 = 0 or λ1 > 0 the K-RBA soliton (or, gradient K-RBA soliton) is called shrinking, steady or
expanding, respectively.

It is fascinating to record that for a particular f it is feasible to transform any K-RBA soliton to an m-quasi
Einstein generalized metric. For example, if we choose β1 = 0, u = e

f
m and K = −m

u , then equation (1.6) turns
into

∇2f + S =
1

m
df ⊗ df − λ1g. (1.7)

Therefore, K-RBA soliton generalizes m-quasi Einstein generalized metric and also it covers Ricci solitons and
almost Ricci solitons of gradient type.

Because of their connection to GR, there was a notable increase of quest in researching Ricci solitons and
related generalizations in a variety of geometrical contexts. Many researchers have investigated many sorts
of solitons in PF spacetimes including Ricci and gradient type Ricci solitons ([17], [18]), η-Ricci solitons [4],
Yamabe and gradient type Yamabe solitons [17], k-almost Yamabe solitons [15], η-Einstein solitons of gradient
type [18], gradient ϱ-Einstein solitons [13], m-quasi Einstein solitons of gradient type [17], gradient Schouten
solitons [18], Ricci-Yamabe solitons [14], respectively.

The research mentioned above motivate us to introduce K-RBS solitons and explore K-RBA solitons in PF
spacetimes and GRW spacetimes. Specifically, we arrive at the following conclusions:

Theorem 1.1. If a PF spacetime admits a K-RBA soliton, then the acceleration vector vanishes and the integral curves
produced by the velocity vector field ϱ are geodesics.

Theorem 1.2. If a PF spacetime admits a gradient K-RBA soliton with Killing velocity vector field ϱ and K and λ1

are invariant under ϱ, then either the equation of state of the PF spacetime is represented by p = 3−n
n−1σ , or the gradient

K-RBA soliton is shrinking or expanding for b1 < a1 or b1 > a1, respectively.

Theorem 1.3. Let a GRW spacetime admit a K-RBA soliton. Then the spacetime becomes a PF -spacetime and the
divergence of the Weyl tensor vanishes. Also, the soliton is expanding for r < (1−n)µ1

β1
, steady if r = (1−n)µ1

β1
and shrinking

for r > (1−n)µ1

β1
.

Corollary 1.1. In dimension 4, a GRW spacetime admitting a K-RBA soliton is of Petrov type I , D or O and the
spacetime reduces to a RW spacetime.

2. Perfect fluid spacetimes and GRW spacetimes

The PF equation (1.1) provides
QF = a1F + b1η(F )ϱ, (2.1)

in which Q indicates the Ricci operator described by g(QF,G) = S(F,G) and contracting the above equation
gives

r =
∑
j

ϵiQej = na1 − b1, (2.2)
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in which at every point of the spacetime, {ej} denotes the orthonormal basis of the tangent space and
ϵj = g(ej , ej) = ±1. The covariant differentiation of equation (2.1) yields

(∇FQ)(G) = (Fa1)G+ (Fb1)η(G)ϱ+ b1(∇F η)(G)ϱ+ b1η(G)∇F ϱ. (2.3)

For a gravitational constant k, the EFEs without a cosmological constant is given by

S − r

2
g = kT, (2.4)

in which the energy momentum tensor is denoted by T .
For a PF spacetime if p denotes the isotropic pressure and σ indicates the energy density, then T is described

by
T = pg + (p+ σ)η ⊗ η. (2.5)

The equations (1.1), (2.4) and (2.5) together provide

a1 =
k(p− σ)

2− n
, b1 = κ(p+ σ). (2.6)

Also, an equation of state (EOS) with the form p = p(σ) is known as stiff matter and p =
σ

3
is known as the

radiation era. If p = 0 and p+ σ = 0, then the PF spacetime represents the dust matter fluid and the dark energy
era [8]. Moreover, it includes the phantom era when p

σ < −1.
Let the potential vector field ϱ be a unit torse-forming vector field. Hence, making use of Theorem A, we

infer
∇F ϱ = Ψ[F + η(F )ϱ] (2.7)

and
S(F, ϱ) = ϕη(F ), (2.8)

where ϕ indicates a non-zero eigenvalue and Ψ stands for a scalar.

Proposition 2.1. For any GRW spacetime, we can write [16]

R(F,G)ϱ = µ1[η(G)F − η(F )G] (2.9)

and
S(F, ϱ) = (n− 1)µ1η(F ), (2.10)

where we set µ1 = (ϱΨ+Ψ2).

3. Proof of the Main Results

Proof of the Theorem 1.1. Let the PF spacetime admit a K-RBA soliton. Then equation (1.5) infers

K(£V g)(F,G) + 2S(F,G) + 2(λ1 + β1r)g(F,G) = 0, (3.1)

which implies

S(F,G) = −K

2
[g(∇F ϱ,G) + g(F,∇Gϱ)]− (λ1 + β1r)g(F,G). (3.2)

Contracting the previous equation yields

r = −Kdivϱ− 4(λ1 + β1r). (3.3)

Again, contracting the equation (1.1) gives

r = −a1 + 4b1. (3.4)

From equations (3.3) and (3.4), we provide

(1 + 4β1)(−a1 + 4b1) = −Kdivϱ− 4λ1. (3.5)
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Also, from equations (1.1) and (3.2), we infer

a1g(F,G) + b1η(F )η(G) = −K

2
[g(∇F ϱ,G) + g(F,∇Gϱ)]− (λ1 + β1r)g(F,G). (3.6)

Putting F = G = ϱ in equation (3.6), we get

a1 − b1 = −(λ1 + β1r). (3.7)

Using equation (3.7), in equation (3.6), we acquire

a1g(F,G) + b1η(F )η(G) = −K

2
[g(∇F ϱ,G) + g(F,∇Gϱ)] + (a1 − b1)g(F,G). (3.8)

Putting F = ϱ, the foregoing equation yields ∇ϱϱ = 0. Also, ∇ϱϱ = 0 means that the integral curves of the
velocity vector are geodesics. Further, the acceleration vector is represented by ∇ϱϱ [3].

Thus the proof is finished.
If divϱ = 0, then the equations (3.5) and (3.7) together reveal

λ1 = − (1 + 4β1)

(4β1 − 5)
[3b1 + β1r]. (3.9)

Corollary 3.1. If a PF spacetime admits a K-RBA soliton, then the soliton is shrinking for r < 3b1
β1

, steady if r = 3b1
β1

and expanding for r > 3b1
β1

, provided that the velocity vector is divergence-free.

Corollary 3.2. If a PF spacetime admits a K-Ricci almost soliton, then the soliton is expanding for b1 < a1, steady if
b1 = a1 and shrinking for b1 > a1.

Proof. In particular, if we take β1 = 0, then the equation (3.7) implies

λ1 = a1 − b1.

Thus, the soliton is expanding for b1 < a1, steady if b1 = a1 and shrinking for b1 > a1.
Hence the result follows.

Remark 3.1. The foregoing corollary has been established in [18] by considering a Ricci soliton.

Proof of the Theorem 1.2. Let the PF spacetime admit a RB soliton of gradient type and therefore from the
equation (1.6), we acquire

K∇FDf +QF = −(λ1 + β1r)F. (3.10)

Differentiating the equation (3.10), we get

K∇G∇FDf = − 1

K
(GK){(λ1 + β1r)F +QF}

−∇GQF − (λ1 + β1r)∇GF

−β1(Gr)F − (Gλ1)F. (3.11)

Interchanging F and G, we provide

K∇F∇GDf = − 1

K
(FK){(λ1 + β1r)G+QG}

−∇FQG− (λ1 + β1r)∇FG

−β1(Fr)G− (Fλ1)G. (3.12)

Again, from the equation (3.10), we infer

K∇[F,G]Df = −Q([F,G])− (λ1 + β1r)[F,G]. (3.13)
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From the equations (3.11), (3.12) and (3.13), we reveal

KR(F,G)Df = − 1

K
(FK){(λ1 + β1r)G+QG}

+
1

K
(GK){(λ1 + β1r)F +QF}

−(∇FQ)G+ (∇GQ)F − β1[(Fr)G− (Gr)F ]

−{(Fλ1)G− (Gλ1)F}. (3.14)

The covariant differentiation of the equation (2.1) yields

(∇FQ)(G) = (Fa1)G+ (Fb1)η(G)ϱ+ b1(∇F η)(G)ϱ+ b1η(G)∇F ϱ. (3.15)

Using the equation (3.15) in (3.14), we acquire

KR(F,G)Df = − 1

K
(FK){(λ1 + β1r)G+QG}

+
1

K
(GK){(λ1 + β1r)F +QF}

−(Fa1)G+ (Ga1)F − {(Fb1)η(G)− (Gb1)η(F )

+b1(∇F η)(G)− b1(∇Gη)(F )}ϱ+ b1{η(G)∇F ϱ− η(F )∇Gϱ}
−β1[(Fr)G− (Gr)F ]− {(Fλ1)G− (Gλ1)F}. (3.16)

Now contracting the equation (3.16), we provide

S(G,Df) = − 1

K
(1− n)(λ1 + β1r)(GK)− 1

K
a1(GK)− 1

K
b1η(G)(ϱK)

−(1− n)(Ga1)− (Gb1)− (ϱb1)η(G)

−b1[(∇ϱη)(G)− (∇Gη)(ϱ) + η(G) divϱ]

−β1(1− n)(Gr)− (1− n)(Gλ1). (3.17)

Also the PF equation (1.1) gives
S(G,Df) = a1(Gf) + b1η(G)(ϱf). (3.18)

Putting G = ϱ in equations (3.17) and (3.18) and then comparing, we reveal

K(a1 − b1)(ϱf) = − 1

K
{(1− n)(λ1 + β1r) + a1 − b1}(ϱK)

−(1− n)(ϱa1) + b1 divϱ− β1(1− n)(ϱr)

−(1− n)(ϱλ1). (3.19)

Let K and λ1 are invariant under ϱ and ϱ be Killing, therefore we acquire (see, [19], p. 89), £ϱp = 0 and £ϱσ = 0.
It is known that a1 = k(p−σ)

n−2 and b1 = k(p+ σ). Thus, we infer

(ϱa1) = (ϱb1) = 0.

Again, from (2.2) we obtain
r = na1 − b1.

Hence, we get (ϱr) = 0. Because of the hypothesis ϱ is Killing, then divϱ = 0.
Thus, using the foregoing result the equation (3.19) yields

(a1 − b1)(ϱf) = 0, (3.20)

since K ̸= 0.
This reflects that either a1 = b1 or (ϱf) = 0 on a PF spacetime with the gradient K-RBA soliton. Here, we

consider the following two cases:
Case (i): Let a1 = b1 and (ϱf) ̸= 0 and hence the equation (1.6) gives

p =
3− n

n− 1
σ,
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which provides the EOS in a PF spacetime equipped with a gradient K-RBA soliton.
Case (ii): Let (ϱf) = 0 and a1 ̸= b1. The covariant differentiation of g(ϱ,Df) = 0 produces

g(∇F ϱ,Df) = −[λ1 + (a1 − b1)]η(F ), (3.21)

in which we have used equations (2.1) and (3.10). Since here ϱ is Killing, we infer g(∇F ϱ,G) + g(F,∇Gϱ) = 0.
Now putting G = ϱ in the last relation, we acquire that g(F,∇ϱϱ) = 0, since g(∇F ϱ, ϱ) = 0. Therefore, we state
that ∇ϱϱ = 0. Using the previous relation, putting F = ϱ in equation (3.21), we find that

λ1 = b1 − a1, (3.22)

which shows that the K-RBA soliton of gradient type in a PF spacetime is expanding or shrinking if b1 > a1
or b1 < a1, respectively.

This finishes the proof.
For n = 4, the EOS is 3p+ σ = 0, which entails that the PF spacetime represents phantom era.
Hence, we write

Corollary 3.3. In dimension 4, if the PF spacetimes permit a gradient K-RBA soliton with Killing velocity vector field
ϱ and K and λ1 are invariant under ϱ, then either the PF spacetime represents phantom era or the gradient K-RBA
soliton is shrinking or expanding for b1 < a1 or b1 > a1, respectively.

Proof of the Theorem 1.3.
Let the GRW spacetime permit a K-RBA soliton and hence the equation (1.5) infers

K(£V g)(F,G) + 2S(F,G) + 2(λ1 + β1r)g(F,G) = 0, (3.23)

which implies

K{g(∇F ϱ,G) + g(F,∇Gϱ)} (3.24)
+2S(F,G) + 2(λ1 + β1r)g(F,G) = 0.

Using the equation (2.7) in equation (3.24), we acquire

S(F,G) = −{(λ1 + β1r +KΨ}g(F,G)−KΨη(F )η(G), (3.25)

which represents PF spacetime.
Hence, Theorem B infers that div C = 0.
Putting F = G = ϱ in the equation (3.25) yields

λ1 = −(n− 1)µ1 − β1r.

Therefore, the soliton is expanding for r < (1−n)µ1

β1
, steady if r = (1−n)µ1

β1
and shrinking for r > (1−n)µ1

β1
.

This completes the proof.

Proof of the Corollary 1.1. With the help of Theorem C, we see that in a GRW spacetime, (div C)(F,G)H = 0
if and only if C(F,G)ϱ = 0. Moreover, C(F,G)ϱ = 0 entails that the Weyl tensor is purely electric [22]. In
dimension 4, the spacetimes are of Petrov types I , D or O if C is purely electric ([27], p. 73).

For dimension 4 ([23], p. 128), C(F,G)ϱ = 0 is identical to

η(U)C(F,G,H,E) + η(F )C(G,U,H,E) (3.26)
+η(G)C(U,F,H,E) = 0,

in which η(F ) = g(F, ϱ) and C(F,G,H,E) = g(C(F,G)H,E) for any F , G, H , E, U .
Now, replacing U by ϱ yields

C(F,G,H,E) = 0. (3.27)

Therefore, it represents a conformally flat spacetime.
A GRW spacetime has been found to be conformally flat if and only it is a RW spacetime [6].
Thus, we have the proof.

By considering a special case, we acquire:
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Corollary 3.4. The GRW spacetime permitting a K-Ricci almost soliton becomes a PF spacetime and the Weyl tensor
is divergence-free. Also, the soliton is expanding for µ1 < 0, steady if µ1 = 0 and shrinking for µ1 > 0.

Proof. In particular, if we take β1 = 0, then the equation (3.25) implies

S(F,G) = −{(λ1 +KΨ}g(F,G)−KΨη(F )η(G),

which tells us that it is a PF spacetime and hence from Theorem B, we conclude that div C = 0.
Setting F = G = ϱ, the above equation produces

λ1 = −(n− 1)µ1.

Thus, the soliton is expanding for µ1 < 0, steady if µ1 = 0 and shrinking for µ1 > 0.
Therefore, the corollary follows.

Discussions

Currently, spacetime, a torsion-free globally time-oriented Lorentzian manifold, is the stage of forecasting
models used for the physical world. According to GR theory, the matter content of the Universe can be found by
applying the appropriate energy-momentum tensor, which is recognised to behave in cosmological models like
a PF spacetime. A PF is the most basic type of fluid, lacking of the ability to transfer heat. Since a perfect fluid
has no viscosity, it is unable to resist a tangential force even when it is flowing. Perfect fluids are used in general
relativity to simulate idealized matter distributions, like those found inside stars or in an isotropic universe.
Modelling large-scale cosmology, GRW spacetimes are an intrinsic and natural extension of RW spacetimes.

In this research, we demonstrate that if the metric of a PF spacetime admits a K-RBA soliton, then the
acceleration vector vanishes and the integral curves produced by the velocity vector field are geodesics. We
also find the circumstances in which the K-RBA solitons and gradient K-RBA solitons in a PF spacetime are
expanding, stable, or shrinking. Furthermore, we deduce that the spacetime represents a PF spacetime and
the Weyl tensor is divergence-free if a GRW spacetime admits a K-RBA soliton.

In future, we or perhaps other geometers will further examine the characteristic of these solitons in
cosmology and GR theory.
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