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Abstract

With this work, we present the asymptotical strongly p-deferred invariant and asymptotical deferred
invariant statistical equivalence of order α (0 < α ≤ 1) for sequences of sets in the Wijsman sense.
Furthermore, we investigate the connections between these concepts and conduct their properties.

1. Introduction and backgrounds

One of the convergence concepts for sequences of sets (Ss) is convergence in the Wijsman sense (Ws) (see, [1, 2]). The
statistical convergence in Ws was first introduced by Nuray and Rhoades [3]. Then, Ulusu and Nuray [4] studied the
lacunary statistical convergence in Ws. Also, Pancaroǧlu and Nuray [5] presented the invariant statistical convergence in Ws.
Furthermore, Ulusu and Nuray [6] and Pancaroǧlu et al. [7] introduced the asymptotical-asymptotical statistical equivalence
and asymptotical invariant-asymptotical invariant statistical equivalence in Ws, respectively.
Agnew [8] first introduced the deferred Cesàro mean for real (complex) sequences. Subsequently, the deferred statistical
convergence was studied by Küçükaslan and Yılmaztürk [9]. Then, Nuray [10] presented the deferred invariant and deferred
invariant statistical convergence.
The deferred statistical convergence in Ws for Ss was introduced by Altınok et al. [11]. Also, Et and Yılmazer [12] studied on
this concept. Then, Gülle [13] presented the deferred invariant statistical convergence of order α in Ws. Furthermore, Altınok
et al. [14] and Et et al. [15] studied the asymptotical deferred statistical and asymptotical deferred statistical equivalence of
order α in Ws, respectively.
In the metric space (U,d), the distance function ρ(u,C) := ρu(C) is defined by

ρu(C) = inf
c∈C

d(u,c)

for each u ∈ U and non-empty C ⊆ U.
For a function f : N→ 2U (power set) is defined by f ( j) =C j ∈ 2U for each j ∈ N (the set of natural numbers), the sequence
{C j}= {C1,C2, . . .} is called sequence of sets.
Throughout the study, unless otherwise specified, (U,d) is regarded as a metric space and C,C j,D j,E j,Fj as non-empty closed
subsets of U.
The Ss {C j} is called convergent in Ws to the set C if for each u ∈ U

lim
j→∞

ρu(C j) = ρu(C)
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and it is denoted in C j
W−→C format.

An invariant mean, also known as a σ -mean, is a continuous linear functional ψ in the bounded sequences space that adhere to
the subsequent conditions:

(1) ψ(xt)≥ 0 when the sequence (xt) consists of non-negative elements for all t,
(2) ψ(e) = 1 for e = (1,1,1, . . .),
(3) ψ(xσ(t)) = ψ(xt) for all the bounded sequences (xt),

where σ is a mapping from the set of non-negative integers into itself.
The mappings σ are regarded as one-to-one and σ j(t) 6= t ( jth iterate of σ ) for all positive integers j. Therefore, ψ expands
the limit functional on the convergent sequences space c such that ψ(xt) = limxt for all (xt) ∈ c.
The Ss {C j} is called;

(i) strongly invariant convergent in Ws to the set C if

lim
j→∞

1
n

n

∑
j=1

∣∣ρu(Cσ j(t))−ρu(C)
∣∣= 0,

(ii) invariant statistically convergent in Ws to the set C if for every ε > 0

lim
n→∞

1
n

∣∣∣{ j ≤ n : |ρu(Cσ j(t))−ρu(C)| ≥ ε
}∣∣∣= 0

for each u ∈ U and uniformly in t. These convergences are denoted in C j
W [Vσ ]−→ C and C j

W (Sσ )−→ C formats, respectively.
For any non-empty closed subsets C j,D j ∈ U such that ρu(C j)> 0 and ρu(D j)> 0 for each u ∈ U, the Ss {C j} and {D j} are
called asymptotically equivalent to multiple η in Ws if for each u ∈ U

lim
j→∞

ρ(u,C j)

ρ(u,D j)
= η

and it is denoted in C j
W η

∼ D j format. These sequences are referred to as asymptotically equivalent in Ws when η = 1.
For any non-empty closed subsets C j,D j ∈ U such that ρu(C j)> 0 and ρu(D j)> 0 for each u ∈ U, the Ss {C j} and {D j} are
called;

(i) asymptotically strongly deferred Cesàro equivalent to multiple η in Ws if

lim
i→∞

1
s(i)− r(i)

s(i)

∑
j=r(i)+1

∣∣∣∣ ρ(u,C j)

ρ(u,D j)
−η

∣∣∣∣= 0,

(ii) asymptotically deferred statistical equivalent to multiple η in Ws if for every ε > 0

lim
i→∞

1
s(i)− r(i)

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ ρ(u,C j)

ρ(u,D j)
−η

∣∣∣∣≥ ε

}∣∣∣∣= 0

for each u ∈ U, where (r(i)) and (s(i)) are sequences of non-negative integers satisfying

r(i)< s(i) and lim
i→∞

s(i) = ∞. (1.1)

These equivalences are denoted in C j
W η

d∼ D j and C j
W η

d (S)
∼ D j formats, respectively.

Throughout the paper, unless otherwise specified, (r(i)) and (s(i)) is regarded as non-negative integer sequences satisfying
(1.1).
An increasing sequence of integers θ = (ki) is called a lacunary sequence when it satisfies two conditions: k0 = 0 and
hi = ki− ki−1→ ∞ as i→ ∞.
For more study on the concepts of convergence, invariant summability, deferred mean and asymptotical equivalence for real or
set sequences, we refer to [16, 17, 18, 19, 20, 21, 22].

From now on, for short, we will use the term ρu

(C j

D j

)
instead of the term

ρ(u,C j)

ρ(u,D j)
.
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2. Main results

With this section, we present the asymptotical strongly p-deferred invariant and asymptotical deferred invariant statistical
equivalence of order α (0 < α ≤ 1) in Ws for Ss. Furthermore, we investigate the connections between these concepts and
conduct their properties.

Definition 2.1. For any non-empty closed subsets C j,D j ∈ U such that ρu(C j) > 0 and ρu(D j) > 0 for each u ∈ U, the Ss
{C j} and {D j} are said to be asymptotically strongly p-deferred invariant equivalent to multiple η of order α in Ws if for
each u ∈ U

lim
i→∞

1(
s(i)− r(i)

)α

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p = 0

uniformly in t, where 0 < p < ∞ and 0 < α ≤ 1. For this case, the notation C j
W η

d [V α
σ ]p

∼ D j is used, and these sequences are
referred to as asymptotically strongly p-deferred invariant equivalent of order α in Ws when η = 1.

Example 2.2. Let us take X = R2 and the Ss {C j} and {D j} as follows:

C j :=

{ {
(x1,x2) ∈ R2 : x2

1 +(x2−1)2 = 1
j

}
; if j is a square integer

{(−1,0)} ; if not

and

D j :=

{ {
(x1,x2) ∈ R2 : x2

1 +(x2 +1)2 = 1
j

}
; if j is a square integer

{(−1,0)} ; if not.

Then, the Ss {C j} and {D j} are asymptotically strongly p-deferred invariant equivalent of order α (0 < α ≤ 1) in Ws.

Remark 2.3.

(i) For Ss, the asymptotical strongly p-deferred invariant equivalence of order α and asymptotical strongly p-invariant
equivalence given in [7] coincide when r(i) = 0, s(i) = i and α = 1.

(ii) For Ss, the asymptotical strongly p-deferred invariant equivalence of order α and asymptotical strongly p-lacunary
invariant equivalence given in [7] coincide when r(i) = ki−1, s(i) = ki and α = 1.

Theorem 2.4. Let 0 < p < ∞ and 0 < α ≤ β ≤ 1. Then,

C j
W η

d [V α
σ ]p

∼ D j⇒C j
W η

d [V β
σ ]p

∼ D j.

Proof. Assume that 0 < α ≤ β ≤ 1 and C j
W η

d [V α
σ ]p

∼ D j. For each u ∈ U, we can write

1(
s(i)− r(i)

)β

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p ≤ 1(
s(i)− r(i)

)α

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p

for all t. Since the right side converges to 0 for i→ ∞ based on our assumption, we have C j
W η

d [V β
σ ]p

∼ D j.

The following corollary is obtained for β = 1 in Theorem 2.4.

Corollary 2.5. Let 0 < p < ∞ and 0 < α ≤ 1. If C j
W η

d [V α
σ ]p

∼ D j, then C j
W η

d [Vσ ]
p

∼ D j which this concept has not been studied
yet.

Theorem 2.6. Let 0 < p < q < ∞ and 0 < α ≤ 1. Then,

C j
W η

d [V α
σ ]q

∼ D j⇒C j
W η

d [V α
σ ]p

∼ D j.

Proof. Assume that 0 < p < q < ∞ and C j
W η

d [V α
σ ]q

∼ D j. By the Hölder inequality, for each u ∈ U, we can write

1(
s(i)− r(i)

)α

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p < 1(
s(i)− r(i)

)α

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣q

for all t. Since the right side converges to 0 for i→ ∞ based on our assumption, we have C j
W η

d [V α
σ ]p

∼ D j.
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Definition 2.7. For any non-empty closed subsets C j,D j ∈ U such that ρu(C j) > 0 and ρu(D j) > 0 for each u ∈ U, the Ss
{C j} and {D j} are said to be asymptotically deferred invariant statistical equivalent to multiple η of order α in Ws if for
every ε > 0 and each u ∈ U

lim
i→∞

1(
s(i)− r(i)

)α

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣= 0

uniformly in t, where 0 < α ≤ 1. For this case, the notation C j
W η

d (Sα
σ )∼ D j is used, and these sequences are referred to as

asymptotically deferred invariant statistical equivalent of order α in Ws when η = 1.

The set {W η

d (Sα
σ )} represents all Ss that asymptotically deferred invariant statistical equivalent of order α .

Example 2.8. Let us take X = R2 and the Ss {C j} and {D j} as follows:

C j :=

{ {
(x1,x2) ∈ R2 : (x1 + j)2 + x2

2 = 1
}

; if j is a square integer

{(1,0)} ; if not

and

D j :=

{ {
(x1,x2) ∈ R2 : (x1− j)2 + x2

2 = 1
}

; if j is a square integer

{(1,0)} ; if not.

Then, the Ss {C j} and {D j} are asymptotically deferred invariant statistical equivalent order α (0 < α ≤ 1) in Ws.

Remark 2.9.

(i) For Ss, the asymptotical deferred invariant statistical equivalence of order α and asymptotical invariant statistical
equivalence given in [7] coincide when r(i) = 0, s(i) = i and α = 1.

(ii) For Ss, the asymptotical deferred invariant statistical equivalence of order α and asymptotical lacunary invariant
statistical equivalence given in [7] coincide when r(i) = ki−1, s(i) = ki and α = 1.

Theorem 2.10. Let 0 < α ≤ β ≤ 1. Then

C j
W η

d (Sα
σ )∼ D j⇒C j

W η

d (Sβ
σ )∼ D j.

Proof. Assume that 0 < α ≤ β ≤ 1 and C j
W η

d (Sα
σ )∼ D j. For every ε > 0 and each u ∈ U, we can write

1(
s(i)− r(i)

)β

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣ ≥ ε

}∣∣∣∣≤ 1(
s(i)− r(i)

)α

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣
for all t. Since the right side converges to 0 for i→ ∞ based on our assumption, we have C j

W η

d (Sβ
σ )∼ D j.

The following corollary is obtained for β = 1 in Theorem 2.10.

Corollary 2.11. Let 0 < α ≤ 1. If C j
W η

d (Sα
σ )∼ D j, then C j

W η

d (Sσ )∼ D j which this concept has not been studied yet.

Theorem 2.12. If the Ss {C j} and {D j} are asymptotically strongly p-deferred invariant equivalent to multiple η of order α

in Ws, then the sequences are asymptotically deferred invariant statistical equivalent to multiple η of order α in Ws, where
0 < α ≤ 1.

Proof. Assume that 0 < α ≤ 1 and C j
W η

d [V α
σ ]p

∼ D j. For every ε > 0 and each u ∈ U, we can write

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p ≥
s(i)

∑
j=r(i)+1∣∣∣ρu

(
C

σ j(t)
D

σ j(t)

)
−η

∣∣∣≥ε

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p

≥ ε
p
∣∣∣∣{r(i)< j ≤ s(i) :

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣
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and so,

1
ε p
(
s(i)− r(i)

)α

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p ≥ 1(
s(i)− r(i)

)α

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣
for all t. Since the left side converges to 0 for i→ ∞ based on our assumption, we have C j

W η

d (Sα
σ )∼ D j.

In the case of α = 1, the opposite of Theorem 2.12 is provided.

Theorem 2.13. Let ρu(C j)Oρu(D j). If the Ss {C j} and {D j} are asymptotically deferred invariant statistical equivalent to
multiple η in Ws, then the sequences are asymptotically strongly p-deferred invariant equivalent to multiple η in Ws.

Proof. Suppose that ρu(C j)Oρu(D j) and C j
W η

d (Sσ )∼ D j. Since ρu(C j)Oρu(D j), then there exists an M > 0 such that

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≤M

for all t and each u ∈ U. For every ε > 0, we can write

1
s(i)− r(i)

s(i)

∑
j=r(i)+1

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p =
1

s(i)− r(i)

s(i)

∑
j=r(i)+1∣∣∣ρu

(
C

σ j(t)
D

σ j(t)

)
−η

∣∣∣≥ε

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p

+
1

s(i)− r(i)

s(i)

∑
j=r(i)+1∣∣∣ρu

(
C

σ j(t)
D

σ j(t)

)
−η

∣∣∣<ε

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣p

≤ Mp

s(i)− r(i)

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣+ ε
p

for all t. Since the left side converges to 0 for i→ ∞ based on our assumption, we have C j
W η

d [Vσ ]
p

∼ D j.

3. Auxiliary results

With this section, first of all, we define the asymptotical invariant statistical equivalence to multiple η of order α in Ws for
Ss, then we examine the relationship between this concept and the asymptotical deferred invariant statistical equivalence to
multiple η of order α .

Definition 3.1. For any non-empty closed subsets C j,D j ∈ U such that ρu(C j) > 0 and ρu(D j) > 0 for each u ∈ U, the Ss
{C j} and {D j} are said to be asymptotically invariant statistical equivalent to multiple η of order α in Ws if for every ε > 0
and each u ∈ U

lim
n→∞

1
nα

∣∣∣∣{ j ≤ n :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣= 0

uniformly in t, where 0 < α ≤ 1. For this case, the notation C j
W η (Sα

σ )∼ D j is used, and these sequences are referred to as
asymptotically invariant statistical equivalent of order α in Ws when η = 1.

The set {W η(Sα
σ )} represents all Ss that asymptotically invariant statistical equivalent of order α .
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Theorem 3.2. If
{

r(i)
s(i)− r(i)

}
is bounded, then {W η(Sα

σ )} ⊂ {W
η

d (Sα
σ )}, where 0 < α ≤ 1.

Proof. Suppose that 0 < α ≤ 1 and C j
W η (Sα

σ )∼ D j. Then, for every ε > 0 and each u ∈ U, we have

lim
n→∞

1
nα

∣∣∣∣{ j ≤ n :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣= 0

uniformly in t. Here using the well-known fact,

lim
i→∞

1
(s(i))α

∣∣∣∣{ j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣= 0

is hold uniformly in t. Also, since{
r(i)< j ≤ s(i) :

∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}
⊂
{

0 < j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}
,

we can write ∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣≤ ∣∣∣∣{0 < j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣
for all t. Thus, the inequality is handled:

1
(s(i)− r(i))α

∣∣∣∣{r(i)< j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣≤ (1+
r(i)

s(i)− r(i)

)α 1
(s(i))α

∣∣∣∣{0 < j ≤ s(i) :
∣∣∣∣ρu

(Cσ j(t)

Dσ j(t)

)
−η

∣∣∣∣≥ ε

}∣∣∣∣.
If
{

r(i)
s(i)− r(i)

}
is bounded in above inequality, then the desired result is obtained for i→ ∞.

4. Conclusion

In this study, as a combination of asymptotical equivalence, deferred statistical convergence, invariant summability and order
α , we defined new concepts for sequences of sets and obtained noteworthy results.
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[16] R. Çolak, Statistical Convergence of Order α , Anamaya Publishers, New Delhi, (2010).
[17] M. Et, M. Çınar and H. Şengül, Deferred statistical convergence in metric spaces, Conf. Proc. Sci. Tech., 2(3) (2019), 189-193. [CrossRef]
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