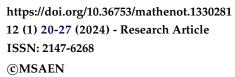
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES



Strongly Lacunary \mathcal{I}^* -Convergence and Strongly Lacunary \mathcal{I}^* -Cauchy Sequence

Nimet Akın*, Erdinç Dündar

Abstract

In this paper, we defined the concepts of lacunary \mathcal{I}^* -convergence and strongly lacunary \mathcal{I}^* -convergence. We investigated the relations between strongly lacunary \mathcal{I} -convergence and strongly lacunary \mathcal{I}^* -convergence. Also, we defined the concept of strongly lacunary \mathcal{I}^* -Cauchy sequence and investigated the relations between strongly lacunary \mathcal{I} -Cauchy sequence and strongly lacunary \mathcal{I}^* -Cauchy sequence.

Keywords: Ideal, Lacunary sequence, *I*-Convergence, *I*-Cauchy Sequence

AMS Subject Classification (2020): 40A05; 40A35

*Corresponding author

1. Introduction and definitions

Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and Schoenberg [2]. The concept of \mathcal{I} -convergence in a metric space, which is a generalized from of statistical convergence, was introduced by Kostyrko et al. [3]. Later it was further studied many others. Nabiev et al. [4] studied on \mathcal{I} -Cauchy sequence and \mathcal{I}^* -Cauchy sequence with some properties. Recently, Das et al. [5] introduced new notions, namely \mathcal{I} -statistical convergence and \mathcal{I} -lacunary statistical convergence by using ideal. Also, Yamanci and Gürdal [6] introduced the notions lacunary \mathcal{I} -convergence and lacunary \mathcal{I} -Cauchy in the topology induced by random *n*-normed spaces and prove some important results. Debnath [7] studied the notion of lacunary ideal convergence in intuitionistic fuzzy normed linear spaces as a variant of the notion of ideal convergence. Tripathy et al. [8] introduced the concept of lacunary \mathcal{I} -convergent sequences. A lot of development have been made about the statistical convergence and ideal convergence defined in different setups [9–11].

In this paper, we defined the concepts of lacunary \mathcal{I}^* -convergence and strongly lacunary \mathcal{I}^* -convergence. We investigated the relations between strongly lacunary \mathcal{I} -convergence and strongly lacunary \mathcal{I}^* -convergence. Also, we defined the concept of strongly lacunary \mathcal{I}^* -Cauchy sequence and investigated the relations between strongly

⁽*Cite as "N. Akın, E. Dündar, Strongly Lacunary I*-Convergence and Strongly Lacunary I*-Cauchy Sequence, Math. Sci. Appl. E-Notes, 12(1) (2024), 20-27"*)

Received : 20-07-2023, Accepted : 13-09-2023, Available online : 02-11-2023

lacunary \mathcal{I} -Cauchy sequence and strongly lacunary \mathcal{I}^* -Cauchy sequence.

Now, we recall some basic concepts and definitions (see [3, 4, 6–8, 12–21]). A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if (*i*) $\emptyset \in \mathcal{I}$, (*ii*) If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$, (*iii*) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$. An ideal is called non-trivial if $\mathbb{N} \notin \mathcal{I}$ and non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$. A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is a filter if and only if (*i*) $\emptyset \notin \mathcal{F}$, (*ii*) If $A, B \in F$, then $A \cap B \in \mathcal{F}$, (*iii*) If $A \in \mathcal{F}$ and $B \supseteq A$, then $B \in \mathcal{F}$. \mathcal{I} is a non-trivial ideal in \mathbb{N} , then the set

$$\mathcal{F}(\mathcal{I}) = \{ M \subset X : (\exists A \in \mathcal{I})(M = X \backslash A) \}$$

is a filter in \mathbb{N} , called the filter associated with \mathcal{I} .

An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to satisfy the property (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2, \cdots\}$ belonging to \mathcal{I} there exists a countable family of sets $\{B_1, B_2, \cdots\}$ such that $A_j \Delta B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_j \in \mathcal{I}$.

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence (x_n) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for each $\varepsilon > 0$

$$A\left(\varepsilon\right) = \left\{n \in \mathbb{N} : \left|x_n - L\right| \ge \varepsilon\right\} \in \mathcal{I}.$$

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence (x_n) of elements of \mathbb{R} is said to be \mathcal{I} -Cauchy sequence if for each $\varepsilon > 0$ there exists a number $N = N(\varepsilon)$ such that

$$A(\varepsilon) = \{n \in \mathbb{N} : |x_n - x_N| \ge \varepsilon\} \in \mathcal{I}.$$

A sequence (x_n) is said to be \mathcal{I}^* -convergent to L if and only if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots \} \subset \mathbb{N}, M \in \mathcal{F}(\mathcal{I})$ such that

$$\lim_{k \to \infty} x_{m_k} = L$$

A sequence (x_n) is said to be \mathcal{I}^* -Cauchy sequence if and only if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots \} \subset \mathbb{N}, M \in \mathcal{F}(\mathcal{I})$ such that the subsequence $x_M = (x_{m_k})$ is an ordinary Cauchy sequence, that is,

$$\lim_{k,p\to\infty}|x_{m_k}-x_{m_p}|=0$$

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that

$$k_0 = 0$$
 and $h_r = k_r - k_{r-1} \rightarrow \infty$

as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by

$$I_r = (k_{r-1}, k_r]$$

and ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_{r} .

Throughout the paper, we take $\theta = \{k_r\}$ be a lacunary sequence and $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal. A sequence (x_n) of elements of \mathbb{R} is said to be strongly lacunary convergent to $L \in \mathbb{R}$ if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| = 0$$

A sequence (x_n) is said to be a strongly lacunary \mathcal{I} -convergent to L, if for every $\varepsilon > 0$ such that

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| \ge \varepsilon \right\} \in \mathcal{I}.$$

In this case, we write $x_n \to L[\mathcal{I}_{\theta}]$.

A sequence (x_n) is said to be a strongly lacunary \mathcal{I} -Cauchy if for every $\varepsilon > 0$ there exists a number $N = N(\varepsilon)$ such that

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - x_N| \ge \varepsilon \right\} \in \mathcal{I}.$$

Lemma 1.1. [4] Let $\{P_i\}_1^\infty$ be a countable collection of subsets of \mathbb{N} such that $P_i \in F(\mathcal{I})$ for each i, where $F(\mathcal{I})$ is a filter associate with an admissible ideal \mathcal{I} with property (AP). Then there exists a set $P \subset \mathbb{N}$ such that $P \in F(\mathcal{I})$ and the set $P \setminus P_i$ is finite for all i.

2. Main results

In this section, firstly, we gave the concepts of lacunary \mathcal{I}^* -convergence and strongly lacunary \mathcal{I}^* -convergence. We investigated the relations between strongly lacunary \mathcal{I} -convergence and strongly lacunary \mathcal{I}^* -convergence. Then after, we gave the concept of strongly lacunary \mathcal{I}^* -Cauchy sequence and investigated the relations between strongly lacunary \mathcal{I} -Cauchy sequence and strongly lacunary \mathcal{I}^* -Cauchy sequence.

Definition 2.1. [12]. A sequence (x_n) is said to be lacunary \mathcal{I}^* -convergent to L if and only if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$ we have

$$\lim_{\substack{r \to \infty\\(r \in M')}} \frac{1}{h_r} \sum_{k \in I_r} x_{m_k} = L$$

In this case, we write $x_n \to L(\mathcal{I}_{\theta}^*)$.

Definition 2.2. A sequence (x_n) is said to be strongly lacunary \mathcal{I}^* -convergent to L if and only if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$ we have

$$\lim_{\substack{r \to \infty\\ (r \in M')}} \frac{1}{h_r} \sum_{k \in I_r} |x_{m_k} - L| = 0$$

In this case, we write $x_n \to L[\mathcal{I}_{\theta}^*]$.

Theorem 2.1. If a sequence (x_n) is strongly lacunary \mathcal{I}^* -convergent to L, then it is lacunary \mathcal{I}^* -convergent to L.

Proof. Let $x_n \to L[\mathcal{I}_{\theta}^*]$. Then, there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I}) \ (i.e.H = \mathbb{N} \setminus M' \in \mathcal{I})$ and for every $\varepsilon > 0$ there is a $r_0 = r_0(\varepsilon) \in \mathbb{N}$ such that for all $r > r_0$ we have

$$\frac{1}{h_r}\sum_{k\in I_r}|x_{m_k}-L|<\varepsilon,\ (r\in M')$$

Then, we have

$$\frac{1}{h_r} \sum_{k \in I_r} x_{m_k} - L \bigg| \leq \frac{1}{h_r} \sum_{k \in I_r} |x_{m_k} - L| \\ < \varepsilon, \ (r \in M')$$

for every $\varepsilon > 0$ and all $r > r_0 = r_0(\varepsilon)$ and so $x_n \to L(\mathcal{I}^*_{\theta})$.

Theorem 2.2. If a sequence (x_n) is strongly lacunary \mathcal{I}^* -convergent to L, then it is strongly lacunary \mathcal{I} -convergent to L.

Proof. Let $x_n \to L[\mathcal{I}_{\theta}^*]$. Then, there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I}) \ (i.e.H = \mathbb{N} \setminus M' \in \mathcal{I}) \text{ and for every } \varepsilon > 0 \text{ there is a } r_0 = r_0(\varepsilon) \in \mathbb{N} \text{ such that for all } r > r_0 \text{ we have}$

$$\frac{1}{h_r}\sum_{k\in I_r}|x_{m_k}-L|<\varepsilon,\ (r\in M').$$

Then,

$$A(\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} |x_{m_k} - L| \ge \varepsilon \right\} \subset H \cup \{1, 2, \cdots, r_0\}.$$

Since ${\mathcal I}$ is an admissible ideal, we have

$$H \cup \{1, 2, \cdots, r_0\} \in \mathcal{I}$$

and so $A(\varepsilon) \in \mathcal{I}$. Hence, $x_n \to L[\mathcal{I}_{\theta}]$.

Theorem 2.3. Let \mathcal{I} be a admissible ideal with property (AP). If (x_n) is strongly lacunary \mathcal{I} -convergent to L, then it is strongly lacunary \mathcal{I}^* -convergent to L.

Proof. Assume that $x_n \to L[\mathcal{I}_{\theta}]$. Then, for every $\varepsilon > 0$,

$$T(\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| \ge \varepsilon \right\} \in \mathcal{I}.$$

Put

$$T_1 = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| \ge 1 \right\} \text{ and } T_p = \left\{ r \in \mathbb{N} : \frac{1}{p} \le \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| < \frac{1}{p-1} \right\},$$

for $p \ge 2$ and $p \in \mathbb{N}$. It is clear that $T_i \cap T_j = \emptyset$ for $i \ne j$ and $T_i \in \mathcal{I}$ for each $i \in \mathbb{N}$. By property (AP) there is a sequence $\{V_p\}_{p\in\mathbb{N}}$ such that $T_j\Delta V_j$ is a finite set for each $j\in\mathbb{N}$ and

$$V = \bigcup_{j=1}^{\infty} V_j \in \mathcal{I}.$$

We prove that,

$$\lim_{\substack{r \to \infty \\ (r \in M')}} \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| = 0,$$

for $M' = \mathbb{N} \setminus V \in \mathcal{F}(\mathcal{I})$. Let $\delta > 0$ be given. Choose $q \in \mathbb{N}$ such that $\frac{1}{q} < \delta$. Then,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| \ge \delta \right\} \subset \bigcup_{j=1}^{q-1} T_j.$$

Since $T_j \Delta V_j$ is a finite set for $j \in \{1, 2, \dots, q-1\}$, there exists $r_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^{q-1} T_j\right) \cap \{r \in \mathbb{N} : r \ge r_0\} = \left(\bigcup_{j=1}^{q-1} V_j\right) \cap \{r \in \mathbb{N} : r \ge r_0\}.$$

If $r \ge r_0$ and $r \notin V$, then

$$r \notin \bigcup_{j=1}^{q-1} V_j$$
 and so $r \notin \bigcup_{j=1}^{q-1} T_j$.

We have

$$\frac{1}{h_r}\sum_{n\in I_r}|x_n-L|<\frac{1}{q}<\delta$$

This implies that

$$\lim_{\substack{r \to \infty \\ (r \in M')}} \frac{1}{h_r} \sum_{n \in I_r} |x_n - L| = 0$$

Hence, we have $x_n \to L[\mathcal{I}_{\theta}^*]$. This completes the proof.

Definition 2.3. [12]. A sequence (x_n) is said to be lacunary \mathcal{I}^* -Cauchy sequence if and only if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$ we have

$$\lim_{\substack{r \to \infty \\ (r \in M')}} \frac{1}{h_r} \sum_{k, p \in I_r} (x_{m_k} - x_{m_p}) = 0.$$

Definition 2.4. A sequence (x_n) is said to be strongly lacunary \mathcal{I}^* -Cauchy sequence if and only if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$ we have

$$\lim_{\substack{r \to \infty \\ (r \in M')}} \sum_{k, p \in I_r} |x_{m_k} - x_{m_p}| = 0.$$

Theorem 2.4. If the sequence (x_n) is strongly lacunary \mathcal{I}^* -Cauchy sequence, then (x_n) is lacunary \mathcal{I}^* -Cauchy sequence.

Proof. Suppose that (x_n) is strongly lacunary \mathcal{I}^* -Cauchy sequence. Then, for every $\varepsilon > 0$, there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$

$$\frac{1}{h_r} \sum_{k,p \in I_r} |x_{m_k} - x_{m_p}| < \varepsilon, \ (r \in M')$$

for every $\varepsilon > 0$ and all $r > r_0 = r_0(\varepsilon)$. Then, we have

$$\left| \frac{1}{h_r} \sum_{k,p \in I_r} (x_{m_k} - x_{m_p}) \right| \leq \frac{1}{h_r} \sum_{k,p \in I_r} |x_{m_k} - x_{m_p}|$$
$$< \varepsilon, \quad (r \in M')$$

for every $\varepsilon > 0$ and all $r > r_0 = r_0(\varepsilon)$ and so (x_n) is lacunary \mathcal{I}^* -Cauchy sequence.

Theorem 2.5. If the sequence (x_n) is strongly lacunary \mathcal{I}^* -Cauchy sequence, then (x_n) is strongly lacunary \mathcal{I} -Cauchy sequence.

Proof. Suppose that (x_n) is strongly lacunary \mathcal{I}^* -Cauchy sequence. Then, for every $\varepsilon > 0$, there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$

$$\frac{1}{h_r} \sum_{k, p \in I_r} |x_{m_k} - x_{m_p}| < \varepsilon, \ (r \in M')$$

for every $\varepsilon > 0$ and all $r > r_0 = r_0(\varepsilon)$. Let $N = N(\varepsilon) \in I_{r_0+1}$. Then, for every $\varepsilon > 0$ and all $r > r_0 = r_0(\varepsilon)$

$$\frac{1}{h_r}\sum_{k\in I_r}|x_{m_k}-x_N|<\varepsilon,\ (r\in M').$$

Now, let $H = \mathbb{N} \setminus M'$. It is clear that $H \in \mathcal{I}$. Then,

$$A(\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - x_N| \ge \varepsilon \right\} \subset H \cup \{1, 2, \cdots, r_0\}$$

Since \mathcal{I} is an admissible ideal, we have

$$H \cup \{1, 2, \cdots, r_0\} \in \mathcal{I}$$

and so $A(\varepsilon) \in \mathcal{I}$. Hence, (x_n) is strongly lacunary \mathcal{I} -Cauchy sequence.

Theorem 2.6. If \mathcal{I} admissible ideal with property (*AP*). The sequence (x_n) is strongly lacunary \mathcal{I} -Cauchy sequence, then (x_n) is strongly lacunary \mathcal{I}^* -Cauchy sequence.

Proof. Assume that (x_n) is strongly lacunary \mathcal{I} -Cauchy sequence. Then, for every $\varepsilon > 0$ there exists an $N = N(\varepsilon)$ such that

$$A(\varepsilon) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{n \in I_r} |x_n - x_N| \ge \varepsilon \right\} \in \mathcal{I}.$$

Let

$$P_{i} = \left\{ r \in \mathbb{N} : \frac{1}{h_{r}} \sum_{n \in I_{r}} |x_{n} - x_{m_{i}}| \ge \frac{1}{i} \right\}, \ i = 1, 2, \dots,$$

where $m_i = N\left(\frac{1}{i}\right)$. It is clear that $P_i \in \mathcal{F}(\mathcal{I})$ for $i = 1, 2, \cdots$. Since \mathcal{I} has the (AP) property, then by Lemma 1.1 there exists a set $P \subset \mathbb{N}$ such that $P \in \mathcal{F}(\mathcal{I})$ and $P \setminus P_i$ is finite for all i. Now, we show that

$$\lim_{\substack{r \to \infty \\ (r \in P)}} \frac{1}{h_r} \sum_{n,m \in I_r} |x_n - x_m| = 0.$$

To prove this let $\varepsilon > 0$, $j \in \mathbb{N}$ such that $j > \frac{2}{\varepsilon}$. If $r \in P$ then $P \setminus P_j$ is a finite set, so there exists $r_0 = r_0(j)$ such that $r \in P_j$ for all $r > r_0(j)$. Therefore, for all $r > r_0(j)$

$$\frac{1}{h_r} \sum_{n \in I_r} |x_n - x_{m_j}| < \frac{1}{j} \text{ and } \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{m_j}| < \frac{1}{j}.$$

Hence, for all $r > r_0(j)$ it follows that

$$\begin{aligned} \frac{1}{h_r} \sum_{n,m \in I_r} |x_n - x_m| &\leq \frac{1}{h_r} \sum_{n \in I_r} |x_n - x_{m_j}| + \frac{1}{h_r} \sum_{m \in I_r} |x_m - x_{m_j}| \\ &< \frac{1}{j} + \frac{1}{j} < \varepsilon. \end{aligned}$$

Thus, for any $\varepsilon > 0$ there exists $r_0 = r_0(\varepsilon)$ such that for all $r > r_0(\varepsilon)$ and $r \in P \in \mathcal{F}(\mathcal{I})$

$$\frac{1}{h_r}\sum_{n,m\in I_r}|x_n-x_m|<\varepsilon.$$

This shows that the sequence (x_n) is strongly lacunary \mathcal{I}^* -Cauchy sequence.

Theorem 2.7. If a sequence (x_n) is strongly lacunary \mathcal{I}^* -convergent to L, then (x_n) is strongly lacunary \mathcal{I} -Cauchy sequence. *Proof.* Let $x_n \to L[\mathcal{I}^*_{\theta}]$. Then, there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}, M \in \mathcal{F}(\mathcal{I})$ such that for the set $M' = \{r \in \mathbb{N} : m_k \in I_r\} \in \mathcal{F}(\mathcal{I})$ we have

$$\lim_{\substack{r \to \infty \\ (r \in M')}} \frac{1}{h_r} \sum_{k \in I_r} |x_{m_k} - L| = 0.$$

It shows that there exists $r_0 = r_0(\varepsilon)$ such that

$$\frac{1}{h_r}\sum_{k\in I_r}|x_{m_k}-L|<\frac{\varepsilon}{2},\ (r\in M')$$

for every $\varepsilon > 0$ and all $r > r_0$. Since

$$\frac{1}{h_r} \sum_{k,p \in I_r} |x_{m_k} - x_{m_p}| \leq \frac{1}{h_r} \sum_{k \in I_r} |x_{m_k} - L| + \frac{1}{h_r} \sum_{p \in I_r} |x_{m_p} - L|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ (r \in M')$$

for all $r > r_0$, so we have

$$\lim_{\substack{r \to \infty \\ (r \in M')}} \frac{1}{h_r} \sum_{k, p \in I_r} |x_{m_k} - x_{m_p}| = 0$$

i.e., (x_n) is a strongly lacunary \mathcal{I}^* -Cauchy sequence. Then, by Theorem 2.5 (x_n) is a strongly lacunary \mathcal{I} -Cauchy sequence.

Conclusions and future work

We investigated the concepts of strongly lacunary \mathcal{I}^* -convergence and strongly lacunary \mathcal{I}^* -Cauchy sequence. These concepts can also be studied for the double sequence in the future.

Article Information

Acknowledgements: The authors are grateful to the referees for their careful reading of this manuscript and several valuable suggestions which improved the quality of the article.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

[1] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).

- [2] Schoenberg, I.J.: *The integrability of certain functions and related summability methods*. The American Mathematical Monthly. **66**, 361-375 (1959).
- [3] Kostyrko, P., Šalát T., Wilczyński, W.: *1-convergence*. Real Analysis Exchange. 26(2), 669-686 (2000).
- [4] Nabiev, A., Pehlivan, S., Gürdal, M.: On *I-Cauchy sequence*. Taiwanese Journal of Mathematics. 11(2), 569-576 (2007).
- [5] Das, P., Savaş, E., Ghosal, S. Kr.: On generalized of certain summability methods using ideals. Applied Mathematics Letters. 36, 1509-1514 (2011).
- [6] Yamancı, U., Gürdal, M.: On lacunary ideal convergence in random n-normed space, Journal of Mathematics. 2013, Article ID 868457, 8 pages, (2013).
- [7] Debnath, P.: *Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces*, Computers & Mathematics with Applications. **63**, 708-715 (2012).
- [8] Tripathy, B.C., Hazarika, B., Choudhary, B.: *Lacunary I-convergent sequences*. Kyungpook Mathematical Journal. 52, 473-482 (2012).
- [9] Nabiev, A., Savaş, E., Gürdal, M.: *Statistically localized sequences in metric spaces*. Journal of Applied Analysis & Computation. **9**(2), 739-746 (2019).
- [10] Şahiner, A., Gürdal. M., Yiğit, T.: *Ideal convergence characterization of the completion of linear n-normed spaces*. Computers & Mathematics with Applications. **61**(3), 683-689 (2011).
- [11] Savaş, E., Gürdal, M.: *I-statistical convergence in probabilistic normed spaces*. Bucharest Scientific Bulletin Series A Applied Mathematics and Physics. 77(4), 195-204 (2015).
- [12] Akın, P. N., Dündar, E., Yalvaç, Ş.: Lacunary \mathcal{I}^* -convergence and lacunary \mathcal{I}^* -Cauchy sequence. (in review).
- [13] Dündar, E., Altay, B.: I_2 -convergence and I_2 -Cauchy of double sequences. Acta Mathematica Scientia. **34**B(2), 343-353 (2014).
- [14] Dündar, E., Altay B.: On some properties of I₂-convergence and I₂-Cauchy of double sequences. General Mathematics Notes. 7(1), 1-12 (2011).

- [15] Dündar, E., Ulusu, U., Pancaroğlu, N.: Strongly I₂-lacunary convergence and I₂-lacunary Cauchy double sequences of sets. The Aligarh Bulletin Of Mathematics. 35(1-2), 1-5 (2016).
- [16] Dündar, E., Ulusu, U.: On Rough *I*-convergence and *I*-Cauchy sequence for functions defined on amenable semigroup. Universal Journal of Mathematics and Applications. **6**(2), 86-90 (2023).
- [17] Freedman, A. R., Sember, J. J., Raphael, M.: Some Cesàro type summability spaces. Proceedings of the London Mathematical Society. 37, 508-520 (1978).
- [18] Sever, Y., Ulusu U., Dündar, E.: On strongly I and I*-lacunary convergence of sequences of sets. AIP Conference Proceedings. 1611(357), 7 pages, (2014).
- [19] Ulusu, U., Nuray, F.: *On strongly lacunary summability of sequences of sets*. Journal of Applied Mathematics & Bioinformatics. **3**(3), 75-88 (2013).
- [20] Ulusu, U., Dündar, E: *I-lacunary statistical convergence of sequences of sets*. Filomat, 28(8), 1567-1574 (2014).
- [21] Ulusu, U., Nuray, F., Dündar, E.: *I-limit and I-cluster points for functions defined on amenable semigroups*. Fundamental Journal of Mathematics and Applications. 4(2), 45-48 (2021).

Affiliations

NIMET AKIN ADDRESS: Afyon Kocatepe University, Afyonkarahisar-Turkey. E-MAIL: npancaroglu@aku.edu.tr ORCID ID:0000-0003-2886-3679

ERDINÇ DÜNDAR ADDRESS: Afyon Kocatepe University, Afyonkarahisar-Turkey. E-MAIL: edundar@aku.edu.tr ORCID ID:0000-0002-0545-7486