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Abstract

In this paper, we consider a new class of nonlinear mappings presented in [12] that generalizes two well-known classes of nonexpansive
type mappings and extends some other classes of mappings. We introduce approximating common fixed point of three C-α nonexpansive
mappings through weak and strong convergence of an iterative sequence in a uniformly convex Banach space. We also numerically illustrate
the common fixed point approximations of the presented iteration for the three C-α nonexpansive mappings.
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1. Introduction and Preliminaries

Throughout this paper, K be a nonempty convex subset of a Banach space X and ϕ : K→ K be a mapping. We denote by F(T ) the set of

fixed points of T . We denote by F =
3
∩

i=1
F(Ti) the set of a common fixed points of Ti : K→ K, i = 1,2,3.

A mapping T is called nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖, for all x,y ∈ X . T is called quasi-nonexpansive if F(T ) 6= /0 and ‖T x− p‖ ≤
‖x− p‖, for all x ∈ X and p ∈ F(T ). In the past decades, many authors have been interested in some generalizations of nonexpansive
mappings and established many iterative processes to approximate fixed points for generalized nonexpansive mappings(see [2], [3], [5], [10],
[11], [12], [14], [18], [22], [23]). In 2008, Suzuki [14] introduced the concept of generalized nonexpansive mappings which is a condition
on mappings called condition (C) (herein referred as Suzuki generalized nonexpansive mapping), which properly includes the class of
nonexpansive mappings. Let K be a nonempty closed and convex subset of a uniformly convex Banach space X . A mapping T : K→ K is
satisfy condition (C) if for all x,y ∈ K 1

2‖x−T x‖ ≤ ‖x− y‖⇒ ‖T x−Ty‖ ≤ ‖x− y‖.
Suzuki [14] showed that the mapping satisfying condition (C) is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.
Lately, fixed-point approaches for Suzuki generalized nonexpansive mappings have been studied by a number of authors see e.g ([1], [4], [6],
[15], [19], [20]).
In 2011, Aoyama and Kohsaka [3] introduced the class of α−nonexpansive mappings in the setting of Banach spaces and obtained some
fixed point results for such mappings. Let K be a nonempty closed and convex subset of a uniformly convex Banach space X . A mapping
T : K→ X is called a α−nonexpansive mapping if there exists an α ∈ [0,1) such that for each x,y ∈ K

‖T x−Ty‖2 ≤ α‖T x− y‖2 +α‖x−Ty‖2 +(1−2α)‖x− y‖2.

Note that Ariza-Ruiz et al. in [2] showed that the concept of α−nonexpansive mapping is trivial for α < 0. It is obvious that every
nonexpansive mapping is 0−nonexpansive and also every α−nonexpansive mapping with a fixed point is quasi-nonexpansive (see [7] ).
In [11], authors introduced the following class of nonexpansive type mappings and obtained some fixed point results for this class of
mappings. A mapping T : K→ K is called a generalized α−nonexpansive mapping if there exists an α ∈ [0,1) and for each x,y ∈ K

1
2
‖x−T x‖ ≤ ‖x− y‖⇒ ‖T x−Ty‖ ≤ α‖T x− y‖+α‖Ty− x‖+(1−2α)‖x− y‖.

More recently, a number of authors have been studied for numerical reckoning fixed points of generalized α−nonexpansive mappings see
e.g ([13], [16], [17]). In general, condition (C), α−nonexpansive mapping and generalized α−nonexpansive mapping are not continuous
mappings (see examples [2], [4], [11], [14], [15], [16], [17]).
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Furthermore, in [12], authors presented the following new class of nonexpansive type mappings and obtained some fixed point results for
this new class of mappings.
A mapping T : K→ K is called C-α nonexpansive mapping if there exists an α ∈ [0,1) and for each x,y ∈ K,

1
2
‖x−T x‖ ≤ ‖x− y‖ implies

‖T x−Ty‖2 ≤ α‖T x− y‖2 +α‖x−Ty‖2 +(1−2α)‖x− y‖2.

A mapping satisfying the condition (C) is C-α nonexpansive mapping. An α−nonexpansive mapping is a C-α nonexpansive mapping and
also generalized α−nonexpansive mapping is a C-α nonexpansive mapping, but from the examples given in [12] it can be seen that the
reverse is not true.
The concept of approximating fixed points for generalized nonexpansive mappings plays an important role in the study of three-step iteration
processes. Pant and Shukla [12] studied the Noor iteration scheme for C-α nonexpansive mapping. In 2000, Noor introduced the first
three-step iteration scheme [8] and defined the following process: for arbitrary x1 ∈ K construct a sequence {xn} defined by

zn = (1− cn)xn + cnT xn
yn = (1−bn)xn +bnT zn

xn+1 = (1−an)xn +n Tyn,∀n ∈ N

where {an},{bn} and {cn} ∈ (0,1).
Inspired and motivated by these facts, we introduce the following iterative scheme for three C-α nonexpansive mappings in uniformly convex
Banach spaces. Let K be a nonempty convex subset of a Banach space X and Ti : K→ K, i = 1,2,3 be mappings. Then for arbitrary x1 ∈ K,
the scheme is defined as follows:

zn = (1− cn)xn + cnT1xn
yn = (1−bn)zn +bnT2zn

xn+1 = (1−an)yn +anT3yn,∀n ∈ N,

 (1.1)

where {an}, {bn} and {cn} in (0,1).
We then present the following three iteration schemes to approximate the fixed point for three mappings.
Let K be a nonempty convex subset of a Banach space X and Ti : K→ K, i = 1,2,3, be mappings. Then for arbitrary x1 ∈ K, the scheme is
defined as follows:

zn = (1− cn)xn + cnTixn
yn = (1−bn)zn +bnTizn

xn+1 = (1−an)yn +anTiyn,∀n ∈ N,


where {an}, {bn} and {cn} in (0,1).
In this paper let say the iterations: (1.2) for i = 1, (1.3) for i = 2, and (1.4) for i = 3, respectively. The aim of this paper is to introduce and
study convergence problem of three-step iterative sequence (1.1) for three C-α nonexpansive mappings in uniformly convex Banach spaces.
The results presented in this paper generalize and extend some recent [12].
The following definitions will be needed in proving our main results.
A Banach space X is said to be uniformly convex if the modulus of convexity of X

δ (ε) = in f{1− ‖x+ y‖
2

: ‖x‖= ‖y‖= 1,‖x− y‖= ε}> 0,

for all 0 < ε ≤ 2
(

i.e., δ (ε) is a function (0,2]→ (0,1)
)
.

Recall that a Banach space X is said to satisfy Opial’s condition [9] if, for each sequence {xn} in X , the condition xn→ x weakly as n→ ∞

and for all y ∈ X with y 6= x imply that

liminf
n→∞

‖xn− x‖< liminf
n→∞

‖xn− y‖.

Let {xn} be a bounded sequence in a Banach space X . For x ∈ X , we set

r(x,{xn}) = limsup
n→∞

‖xn− x‖.

The asymptotic radius of {xn} relative to K is defined by

r(K,{xn}) = inf{r(x,{xn}) : x ∈ K}.

The asymptotic center of {xn} relative to K is the set

A(K,{xn}) = {x ∈ K : r(x,{xn}) = r(K,{xn})}.

It is known that, in uniformly convex Banach space, A(K,{xn}) consists of exactly one-point.

Lemma 1.1. [21]. Let r > 0 be a fixed real number. Then a Banach space X is uniformly convex if and only if there is a continuous strictly
increasing convex function g : [0,∞)−→ [0,∞) with g(0) = 0 such that

‖λx+(1−λ )y‖2 ≤ λ‖x‖2 +(1−λ )‖y‖2−λ (1−λ )g
(
‖x− y‖

)
for all x,y ∈ Br := {x ∈ X : ‖x‖ ≤ r} and λ ∈ [0,1].
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We now list some properties of mapping that satisfy C-α nonexpansive mapping. In what follows, we shall make use of the following
lemmas.

Lemma 1.2. Let K be a nonempty closed and convex subset of Banach space X. Let T : K→ K be a C-α nonexpansive mapping for some
α ∈ [0,1) such that F(T ) 6= /0. Then T is a quasi-nonexpansive.

Proof. Let x ∈ K and p ∈ F(T ). Then we have 1
2‖p−T p‖= 0≤ ‖p− x‖ implies that

‖T x− p‖2 = ‖T x−T p‖2

≤ α‖T x− p‖2 +α‖x−T p‖2 +(1−2α)‖x− p‖2

≤ α‖T x− p‖2 +α‖x− p‖2 +(1−2α)‖x− p‖2

≤ α‖T x− p‖2 +(1−α)‖x− p‖2.

So, we have ‖T x− p‖2 ≤&‖x− p‖2.

Lemma 1.3. [12]. Suppose that K is a nonempty subset a Banach space X and T : K→ K is a C-α nonexpansive mapping. Then F(T ) is
closed. In addition, if K is convex and X is strictly convex, then F(T ) is convex.

Proposition 1.4. [12]. (Demiclosedness principle). Assume that K is a nonempty subset of a Banach space X which has the Opial
property and T : K→ K is a C-α nonexpansive mapping. If {xn} converges weakly to a point p and lim

n→∞
‖T xn−xn‖= 0, then T p = p. That

is, I−T is demiclosed at zero, where I is the identity mapping on X.

2. Main results

In this section, we prove the three-step iterative scheme (1.1) to converge to a common fixed point for three C-α nonexpansive mappings in
uniformly convex Banach space.

Lemma 2.1. Let K be a nonempty bounded, closed, convex subset of a uniformly convex Banach space X. Ti : K→ K, i = 1,2,3, be three
C-α nonexpansive mappings for α ∈ [0,1) with F 6= /0. For arbitrary chosen x0 ∈ K, {xn} be a sequence generated by (1.1), then we have,
for common fixed point p of Ti, i = 1,2,3, lim

n→∞
‖xn− p‖ exists.

Proof. From Lemma 1.2, for any p ∈ F , x ∈ K and Ti : K→ K, i = 1,2,3, are C-α nonexpansive mappings , then we have for each i = 1,2,3,
1
2‖p−Ti p‖= 0≤ ‖p− x‖ implies that

‖Tix− p‖2 = ‖Tix−Ti p‖2

≤ α‖Tix− p‖2 +α‖x−Ti p‖2 +(1−2α)‖x− p‖2 (2.1)

≤ α‖Tix− p‖2 +α‖x− p‖2 +(1−2α)‖x− p‖2

≤ α‖Tix− p‖2 +(1−α)‖x− p‖2.

So, for each i = 1,2,3, ‖Tix− p‖2 ≤&‖x− p‖2. Thus for each i = 1,2,3, Ti C-α nonexpansive mappings are quasi-nonexpansive.
Now, using (1.1) and (2.1), we have,

‖zn− p‖ = ‖(1− cn)xn + cnT1xn− p‖ (2.2)

= ‖(1− cn)(xn− p)+ cn(T1xn− p)‖
≤ (1− cn)‖xn− p‖+ cn‖T1xn− p‖
≤ (1− cn)‖xn− p‖+ cn‖xn− p‖= ‖xn− p‖.

Using (1.1), (2.1) and (2.2), we get

‖yn− p‖ = ‖(1−bn)zn +bnT2zn− p‖ (2.3)

= ‖(1−bn)(zn− p)+bn(T2zn− p)‖
≤ (1−bn)‖zn− p‖+bn‖T2zn− p‖
≤ (1−bn)‖zn− p‖+bn‖zn− p‖= ‖zn− p‖ ≤ ‖xn− p‖.

By using (1.1), (2.1), (2.2) and (2.3) , we get

‖xn+1− p‖ = ‖(1−an)yn +anT3yn− p‖
= ‖(1−an)(yn− p)+an(T3yn− p)‖
≤ (1−an)‖yn− p‖+an‖T3yn− p‖
≤ (1−an)‖yn− p‖+an‖yn− p‖
= ‖yn− p‖ ≤ ‖xn− p‖.

Thus we have

‖xn+1− p‖ ≤ ‖xn− p‖.

This implies that {‖xn− p‖} is bounded and non-increasing for each p common fixed point of Ti, i = 1,2,3. It follows that lim
n→∞
‖xn− p‖

exists.
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Theorem 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space X. Ti : K→K, i= 1,2,3, be C-α nonexpansive
mappings for α ∈ [0,1), common fixed point p of Ti, i = 1,2,3, and {an}, {bn} and {cn} be real sequences in (0,1). Let {xn} be a sequence
in K defined by (1.1), and parameters satisfy one of the following conditions:

(1) If limsup
n→∞

an < 1 and liminf
n→∞

an(1−an)> 0,

(2) If limsup
n→∞

bn < 1 and liminf
n→∞

bn(1−bn)> 0,

(3) If limsup
n→∞

cn < 1 and liminf
n→∞

cn(1− cn)> 0.

Then F 6= /0 if and only if {xn} is bounded and lim
n→∞
‖T1xn−xn‖= 0, lim

n→∞
‖T2zn−zn‖= 0, lim

n→∞
‖T3yn−yn‖= 0, lim

n→∞
‖zn−xn‖= 0, lim

n→∞
‖zn−

yn‖= 0, lim
n→∞
‖yn− xn‖= 0, lim

n→∞
‖T2xn− xn‖= 0, lim

n→∞
‖T3xn− xn‖= 0.

Proof. By Lemma 2.1, we know that lim
n→∞
‖xn− p‖ exits for any p ∈ F . Then the sequence {xn} is bounded. Ti : K → K, i = 1,2,3,

are C-α nonexpansive mappings and Ti : K → K, i = 1,2,3, has a common fixed point p. From (2.1) and Lemma 2.1, we see that
M1 = sup{‖xn‖,‖zn‖,‖yn‖,‖T1xn‖,‖T2zn‖,‖T3yn‖ : n ∈ N}< ∞. Also from (1.1), (2.1) and Lemma 1.1 , we have

‖zn− p‖2 = ‖(1− cn)xn + cnT1xn− p)‖2

= ‖(1− cn)(xn− p)+ cn(T1xn− p)‖2

≤ (1− cn)‖xn− p‖2 + cn‖T1xn− p‖2− cn(1− cn)
(

g
(
‖xn−T1xn‖

))
≤ (1− cn)‖xn− p‖2 + cn‖xn− p‖2− cn(1− cn)

(
g(‖xn−T1xn‖)

)
= ‖xn− p‖2− cn(1− cn)

(
g
(
‖xn−T1xn‖

))
.

Thus we have

‖zn− p‖2 ≤ ‖xn− p‖2− cn(1− cn)
(

g
(
‖xn−T1xn‖

))
. (2.4)

Now by (1.1), (2.1), (2.4) and Lemma 1.1, we have

‖yn− p‖2 = ‖(1−bn)zn +bnT2zn− p‖2

= ‖(1−bn)(zn− p)+bn(T2zn− p)‖2

≤ (1−bn)‖zn− p‖2 +bn‖zn− p‖2−bn(1−bn)
(

g
(
‖zn−T2zn‖

))
≤ ‖xn− p‖2−bn(1−bn)

(
g
(
‖zn−T2zn‖

))
− cn(1− cn)

(
g
(
‖xn−T1xn‖

))
.

So we have

‖yn− p‖2 ≤ ‖xn− p‖2−bn(1−bn)
(

g
(
‖T2zn−T2xn‖

))
(2.5)

−cn(1− cn)
(

g
(
‖T1xn− xn‖

))
.

Moreover, by (1.1), (2.1), (2.5) and Lemma 1.1, we have

‖xn+1− p‖2 = ‖(1−an)yn +anT3yn− p‖2 ≤ (1−an)‖yn− p‖2 +an‖T3yn− p‖2−an(1−an)
(

g
(
‖yn−T3yn‖

))
≤ (1−an)‖yn− p‖2 +an‖yn− p‖2−an(1−an)

(
g
(
‖yn−T3yn‖

))
≤ ‖yn− p‖2−an(1−an)

(
g
(
‖yn−T3yn‖

))
−bn(1−bn)

(
g
(
‖zn−T2zn‖

))
−cn(1− cn)

(
g
(
‖xn−T1xn‖

))
≤ ‖xn− p‖2−an(1−an)

(
g
(
‖yn−T3yn‖

))
−bn(1−bn)

(
g
(
‖zn−T2zn‖

))
− cn(1− cn)

(
g
(
‖xn−T1xn‖

))
.

Thus we have

‖xn+1− p‖2 ≤ ‖xn− p‖2−an(1−an)
(

g
(
‖yn−T3yn‖

))
−bn(1−bn)

(
g
(
‖zn−T2zn‖

))
−cn(1− cn)

(
g
(
‖xn−T1xn‖

))
From the last inequality, we have

an(1−an)
(

g
(
‖yn−T3yn‖

))
≤

(
‖xn− p‖2−‖xn+1− p‖2

)
, (2.6)

bn(1−bn)
(

g
(
‖zn−T2zn‖

))
≤

(
‖xn− p‖2−‖xn+1− p‖2

)
, (2.7)
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and

cn(1− cn)
(

g
(
‖xn−T1xn‖

))
≤

(
‖xn−q‖2−‖xn+1− p‖2

)
. (2.8)

By condition limsup
n→∞

an < 1 and liminf
n→∞

an(1−an)> 0, then we have

lim
n→∞

g
(
‖yn−T3yn‖

)
= 0.

From g is continuous strictly increasing with g(0) = 0 then we have

lim
n→∞
‖yn−T3yn‖= 0. (2.9)

By using a similar method for inequalities (2.7) and (2.8) we have

lim
n→∞
‖zn−T2zn‖= 0. (2.10)

and

lim
n→∞
‖T1xn− xn‖= 0. (2.11)

Next, from (1.1) and (2.11), we have

‖zn− xn‖ ≤ ‖(1− cn)xn + cnT1xn− xn‖ (2.12)

≤ (cn)‖T1xn− xn‖→ 0 as n→ ∞.

Also, from (1.1) and (2.10), we have

‖yn− zn‖ ≤ ‖(1−bn)zn +bnT2zn− zn‖ (2.13)

≤ (bn)‖T2zn− zn‖→ 0 as n→ ∞.

By (2.10) and (2.12) we have

‖T2zn− xn‖ ≤ ‖T2zn− zn‖+‖zn− xn‖→ 0 as n→ ∞. (2.14)

Moreover from (2.12) and (2.13)

‖yn− xn‖ ≤ ‖yn− zn‖+‖zn− xn‖→ 0 as n→ ∞. (2.15)

By (2.9) and (2.15) we have

‖T3yn− xn‖ ≤ ‖T3yn− yn‖+‖yn− xn‖→ 0 as n→ ∞. (2.16)

Next

‖T2xn− zn‖2 ≤
(
‖T2xn−T2zn‖+‖T2zn− zn‖

)2

= ‖T2xn−T2zn‖2 +‖T2zn− zn‖2 +2
(
‖T2xn−T2zn‖‖T2zn− zn‖

)
≤ α‖T2xn− zn‖2 +α‖T2zn− xn‖2 +(1−2α)‖xn− zn‖2 +4M1‖T2zn− zn‖+‖T2zn− zn‖2.

Then from (2.10), (2.12) and (2.14), we obtain

‖T2xn− zn‖2 ≤ α

1−α
‖T2zn− xn‖2 +

(1−2α)

(1−α)
‖xn− zn‖2 +

4M1

(1−α)
‖T2zn− zn‖+

1
(1−α)

‖T2zn− zn‖2 (2.17)

Thus from (2.12) and (2.17) we obtain

‖T2xn− xn‖ ≤ ‖T2xn− zn‖+‖zn− xn‖→ 0 as n→ ∞. (2.18)

Next

‖T3xn− yn‖2 ≤
(
‖T3xn−T3yn‖+‖T3yn− yn‖

)2

= ‖T3xn−T2yn‖2 +‖T3yn− yn‖2 +2
(
‖T3xn−T3yn‖‖T3yn− yn‖

)
≤ α‖T3xn− yn‖2 +α‖T3yn− xn‖2 +(1−2α)‖xn− yn‖2 +4M1‖T3yn− yn‖+‖T3yn− yn‖2.
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Then from (2.9),(2.15) and (2.16) we obtain

‖T3xn− yn‖2 ≤ α

1−α
‖T3yn− xn‖2 +

(1−2α)

(1−α)
‖xn− yn‖2 +

4M1

(1−α)
‖T3yn− yn‖+

1
(1−α)

‖T3yn− yn‖2→ 0 as n→ ∞.

Thus from (2.15) and (2.19) we obtain

‖T3xn− xn‖ ≤ ‖T3xn− yn‖+‖yn− xn‖→ 0 as n→ ∞. (2.19)

Thus from (2.11), (2.18) and (2.19) we obtain

lim
n→∞
‖T3xn− xn‖= 0, lim

n→∞
‖T2xn− xn‖= 0 and lim

n→∞
‖T1xn− xn‖= 0.

Conversely, assume that {xn} is bounded and lim
n→∞
‖T3xn−xn‖= 0, lim

n→∞
‖T2xn−xn‖= 0 and lim

n→∞
‖T1xn−xn‖= 0. For each i = 1,2,3, there

are bounded subsequences {Tixnk} of {Tixn} such that lim
k→∞
‖Tixnk−xnk‖= 0. Suppose p∈A(K,{xnk}). Let M2 = sup{‖xnk‖,‖Tixnk‖,‖Ti p‖,‖p‖ :

k ∈ N, i = 1,2,3}< ∞. For α ∈ [0,1) and i = 1, by Lemma 1.2, we obtain

‖xnk −T1 p‖2 ≤
(
‖xnk −T1xnk‖+‖T1xnk −T1 p‖

)2

= ‖xnk −T1xnk‖2 +‖T1xnk −T1 p‖2 +2
(
‖xnk −T1xnk‖‖T1xnk −T1 p‖

)
≤ α‖T1xnk − p‖2 +α‖xnk −T1 p‖2 +(1−2α)‖xnk − p‖2 +2

(
‖T1xnk −T1 p‖‖xnk −T1xnk‖

)
+‖xnk −T1xnk‖2.

(1−α)‖xnk −T1 p‖2 ≤ (1+α)‖T1xnk − p‖2 +2
(

α‖xnk − p‖‖xnk −T1xnk‖
)
+

+ 2
(
‖xnk −T1xnk‖‖xnk −T1 p‖

)
‖xnk −T1xnk‖+(1−α)‖xnk − p‖2.

Thus we have

‖xnk −T1 p‖2 ≤ (1+α)

(1−α)
‖T1xnk − p‖2 +

2
(1−α)

(
α‖xnk − p‖+‖xnk −T1 p‖

)
‖xnk −T1xnk‖+‖xnk − p‖2. (2.20)

Therefore

‖xnk −T1 p‖2 ≤ (1+α)

(1−α)
‖T1xnk − p‖2 +

4M2(1+α)

(1−α)
‖xnk −T1xnk‖+‖xnk − p‖2.

Take the both side limsup, then we have

limsup
k→∞

‖xnk −T1 p‖2 ≤ (1+α)

(1−α)
limsup

k→∞

‖T1xnk − p‖2 +
4M2(1+α)

(1−α)
limsup

k→∞

‖xnk −T1xnk‖+ limsup
k→∞

‖xnk − p‖2.

Thus we have for T1 : K→ K, i = 1

r(T1 p,{xnk}) = limsup
k→∞

‖xnk −T1 p‖ ≤ limsup
k→∞

‖xnk − p‖= r(p,{xnk}).

This implies that for i = 2,3, we also obtain

r(T2 p,{xnk}) = limsup
k→∞

‖xnk −T2 p‖ ≤ limsup
k→∞

‖xnk − p‖= r(p,{xnk})

and

r(T3 p,{xnk}) = limsup
k→∞

‖xnk −T3 p‖ ≤ limsup
k→∞

‖xnk − p‖= r(p,{xnk}).

These mean that for each i = 1,2,3, Ti p ∈ A(K,{xnk}). Since X is uniformly Banach space, A(K,{xn}) is singleton, hence for each i = 1,2,3,
Ti p = p. This completes the proof.

In the next result, we prove the weak convergence of the iterative scheme (1.1) for three C-α nonexpansive mappings with α ∈ [0,1) in a
uniformly convex Banach space satisfying Opial’s condition.

Theorem 2.3. Let X be a uniformly convex Banach space satisfying Opial’s condition and K be a nonempty closed convex subset of X. Let
Ti : K→ K, i = 1,2,3, be three C-α nonexpansive mappings for α ∈ [0,1). Assume that p ∈ F is a common fixed point of Ti, i = 1,2,3. Let
{xn} be a sequence in K defined by (1.1) where {an}, {bn} and {cn} are real sequences in (0,1) and satisfy the conditions of Theorem 2.1.
Then {xn} converges weakly to a common fixed point of p Ti, i = 1,2,3.
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Proof. Since F 6= /0, it follows from Lemma 2.1 that lim
n→∞
‖xn− p‖ exists. Now, we show that {xn} has a unique weak subsequential limit

in F . We assume that ω1 and ω2 are weak limits of the subsequences {xnk} and {xn j} of {xn}, respectively. From Theorem 2.1, we have
lim
n→∞
‖T3xn− xn‖ = 0, lim

n→∞
‖T2xn− xn‖ = 0 and lim

n→∞
‖T1xn− xn‖ = 0. Moreover by Proposition 1.1, I−Ti for i = 1,2,3 are demiclosed

at zero. This implies that (I−Ti)ω1 = 0, i = 1,2,3, that is Tiω1 = ω1, i = 1,2,3. Similarly Tiω2 = ω2, i = 1,2,3. Now, we show the
uniqueness. If ω1 6= ω2, then by the Opial’s condition, we have

lim
n→∞
‖xn−ω1‖ = lim

j→∞
‖xn j −ω1‖< lim

j→∞
‖xn j −ω2‖= lim

n→∞
‖xn−ω2‖

= lim
k→∞
‖xnk −ω2‖< lim

k→∞
‖xnk −ω1‖= lim

n→∞
‖xn−ω1‖

This is a contradiction. So, ω1 = ω2. Therefore {xn} converges weakly to a common fixed point of Ti, i = 1,2,3. This completes the
proof.

Finally, we prove our strong convergence theorem as follows.

Theorem 2.4. Let X be a real uniformly convex Banach space, K be a nonempty compact convex subset of X and for α ∈ [0,1), Ti : K→
K, i = 1,2,3, be three C-α nonexpansive mappings with F 6= /0. Let {xn} be a sequence in K defined by (1.1) where {an}, {bn} and {cn} in
(0,1) for all n ∈ N, and satisfy the conditions of Theorem 2.1. Then {xn} converges strongly to a common fixed point of Ti, i = 1,2,3.

Proof. By Theorem 2.1, we have lim
n→∞
‖T3xn− xn‖ = 0, lim

n→∞
‖T2xn− xn‖ = 0 and lim

n→∞
‖T1xn− xn‖ = 0. Since K is compact, there exists

a subsequence {xnk} of {xn} such that xnk −→ p as k→ ∞. Let M3 = sup{‖xnk‖,‖Tixnk‖,‖Ti p‖,‖p‖ : k ∈ N, i = 1,2,3} < ∞. Then from
(2.20), choose i = 1, by Lemma 1.2, we obtain for α ∈ [0,1)

‖xnk −T1 p‖2 ≤ (1+α)

(1−α)
‖T1xnk − p‖2 +

4M3(1+α)

(1−α)
‖xnk −T1xnk‖+‖xnk − p‖2

Letting k→ ∞, we get T1 p = p. By using a similar method, p = T2 p and then we have p = T3 p. Thus we have {xnk} converges to common
fixed point p of Ti, i = 1,2,3. Since by Lemma 2.1, lim

n→∞
‖xn− p‖ exists for every p ∈ F , so {xn} converges strongly to a common fixed

point of Ti, i = 1,2,3.

3. Examples

Now we give the examples of Ti : K → K, i = 1,2,3, be three C-α nonexpansive mappings with α ∈ [0,1) which are not generalized
α−nonexpansive mappings.

Example 3.1. Let K = [0,5]⊂ R endowed with usual norm in R. Define a mapping T1 : K→ K by

T1x =
{ x

4 , x 6= 5
13
4 , x = 5

To verify that for α = 3
4 , T1 is a C- 3

4 nonexpansive mapping, we consider the following cases:
Case I:If x,y 6= 5, then

α |T1x− y|2 +α |T1y− x|2 +(1−2α) |x− y|2 =
3
4
|T1x− y|2 + 3

4
|T1y− x|2− 1

2
|x− y|2

=
3
4
(

1
4

x− y)2 +
3
4
(

1
4

y− x)2− 1
2
(x− y)2

=
3
4
(

1
16

x2− 1
2

xy+ y2)+
3
4
(

1
16

y2− 1
2

xy+ x2)− 1
2

x2 + xy− 1
2

y2

=
3
64

x2− 3
8

xy+
3
4

y2 +
3
64

y2− 3
8

xy+
3
4

x2− 1
2

x2 + xy− 1
2

y2

=

(
1
4

x− 1
4

y
)2

+
15
64

x2 +
15
64

y2 +
3
8

xy≥
∣∣∣∣14 x− 1

4
y
∣∣∣∣2 = |T1x−T1y|2 .

Case II:If x = 5,y 6= 5, then

α |T1x− y|2 +α |T1y− x|2 +(1−2α) |x− y|2 =
3
4
|T1x− y|2 + 3

4
|T1y− x|2− 1

2
|x− y|2

=
3
4
(

13
4
− y)2 +

3
4
(

1
4

y−5)2− 1
2
(5− y)2

=
3
4
(

169
16
− 13

2
y+ y2)+

3
4
(

1
16

y2− 5
2

y+25)− 25
2

+5y− 1
2

y2

= (
13
4
− 1

4
y)2 +

15
64

y2− 1
8

y+
231
64
≥
∣∣∣∣13

4
− 1

4
y
∣∣∣∣2 = |T1x−T1y|2 .

Since for y ∈ [0,5), 15
64 y2− 1

8 y+ 231
64 ≥ 0, then T1 is a C- 3

4 nonexpansive mapping.
Contrarily at x = 3,y = 5; we get

1
2
|x−T1x|= 1

2

∣∣∣∣3− 3
4

∣∣∣∣= 9
8
≤ 2 = |x− y| .
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Then, we have

α |T1x− y|+α |T1y− x|+(1−2α) |x− y| = α

∣∣∣∣34 −5
∣∣∣∣+α

∣∣∣∣13
4
−3
∣∣∣∣+(1−2α) |3−5|= 2+

1
2

α

<

∣∣∣∣34 − 13
4

∣∣∣∣= 10
4

= 2+
1
2
= |T1x−T1y| .

Hence T1 is not a generalized 3
4−nonexpansive mapping.

Example 3.2. Let K = [0,5]⊂ R endowed with usual norm in R. Define a mapping T2 : K→ K by

T2x =
{ x

3
, x 6= 5

11
3
, x = 5

To verify that for α = 3
4 , T2 is a C- 3

4 nonexpansive mapping, we consider the following cases:
Case I:If x,y 6= 5, then

α |T2x− y|2 +α |T2y− x|2 +(1−2α) |x− y|2 =
3
4
|T2x− y|2 + 3

4
|T2y− x|2− 1

2
|x− y|2

=
3
4
(

1
3

x− y)2 +
3
4
(

1
3

y− x)2− 1
2
(x− y)2

=
3
4
(

1
9

x2− 2
3

xy+ y2)+
3
4
(

1
9

y2− 2
3

xy+ x2)− 1
2

x2 + xy− 1
2

y2

=
3

36
x2− 1

2
xy+

3y2

4
+

3y2

36
− 1

2
xy+

3x2

4
− 1

2
x2 + xy− 1

2
y2

= x2(
1
12

+
3
4
− 1

2
)+ y2(

1
12

+
3
4
− 1

2
) =

1
3

x2 +
1
3

y2

= (
1
3

x− 1
3

y)2 +
2
9
(x2 + y2 + xy)≥

∣∣∣∣13 x− 1
3

y
∣∣∣∣2 = |T2x−T2y|2 .

Case II:If x = 5,y 6= 5, then

α |T2x− y|2 +α |T2y− x|2 +(1−2α) |x− y|2 =
3
4
|T2x− y|2 + 3

4
|T2y− x|2− 1

2
|x− y|2

=
3
4
(

11
3
− y)2 +

3
4
(

1
3

y−5)2− 1
2
(5− y)2

=
3
4
(

121
9
− 22

3
y+ y2)+

3
4
(

1
9

y2− 10
3

y+25)− 25
2

+5y− 1
2

y2

= (
11
3
− 1

3
y)2 +

2
9

y2− 5
9

y+
26
9
≥
∣∣∣∣11

3
− 1

3
y
∣∣∣∣2 = |T2x−T2y|2 .

Since 2
9 y2− 5

9 y+ 26
9 ≥ 0, T2 is a C- 3

4 nonexpansive mapping.
Contrarily at x = 3,y = 5; we get

1
2
|x−T2x|= 1

2

∣∣∣∣3− 3
3

∣∣∣∣= 1≤ 2 = |x− y|

Then, we have

α |T2x− y|+α |T2y− x|+(1−2α) |x− y| = α

∣∣∣∣33 −5
∣∣∣∣+α

∣∣∣∣11
3
−3
∣∣∣∣+(1−2α) |3−5|= 2+

2
3

α

<

∣∣∣∣33 − 11
3

∣∣∣∣= 8
3
= 2+

2
3
= |T2x−T2y| .

Hence T2 is not a generalized 3
4−nonexpansive mapping.

Example 3.3. Let K = [0,5]⊂ R endowed with usual norm in R. Define a mapping T3 : K→ K by

T3x =
{ x

2 , x 6= 5
7
2 , x = 5

To verify that for α = 3
4 , T3 is a C- 3

4 nonexpansive mapping, we consider the following cases:
Case I:If x,y 6= 5, then

α |T3x− y|2 +α |T3y− x|2 +(1−2α) |x− y|2 =
3
4
|T3x− y|2 + 3

4
|T3y− x|2− 1

2
|x− y|2

=
3
4
(

1
2

x− y)2 +
3
4
(

1
2

y− x)2− 1
2
(x− y)2

=
3
4
(

1
4

x2− xy+ y2)+
3
4
(

1
4

y2− xy+ x2)− 1
2

x2 + xy− 1
2

y2

=
3
16

x2− 3
4

xy+
3
4

y2 +
3
16

y2− 3
4

xy+
3
4

x2− 1
2

x2 + xy− 1
2

y2
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= x2(
3

16
+

3
4
− 1

2
)+ y2(

3
16

+
3
4
− 1

2
)− 1

2
xy =

7
16

x2 +
7

16
y2− 1

2
xy

= (
1
2

x− 1
2

y)2 +
3
16

x2 +
3

16
y2 ≥

∣∣∣∣12 x− 1
2

y
∣∣∣∣2 = |T3x−T3y|2

Case II:If x = 5,y 6= 5, then

α |T3x− y|2 +α |T3y− x|2 +(1−2α) |x− y|2 =
3
4
|T3x− y|2 + 3

4
|T3y− x|2− 1

2
|x− y|2

=
3
4
(

7
2
− y)2 +

3
4
(

1
2

y−5)2− 1
2
(5− y)2

=
3
4
(

49
4
−7y+ y2)+

3
4
(

y2

4
−5y+25)− 25

2
+5y− 1

2
y2

= y2(
3
4
+

3
16
− 1

2
)+ y(5− 21

4
− 15

4
)+

147
16

+
75
4
− 25

2

=
7

16
y2−4y+

247
16

= (
7
2
− 1

2
y)2 +

3
16

y2− 1
2

y+
51
16
≥
∣∣∣∣72 − 1

2
y
∣∣∣∣2 = |T3x−T3y|2

Since 3
16 y2− 1

2 y+ 51
16 ≥ 0, then T3 is a C- 3

4 nonexpansive mapping.
Contrarily at x = 5,y = 3.4; we get

1
2
|x−T3x|= 1

2

∣∣∣∣5− 7
2

∣∣∣∣= 3
4
= 0.75≤ 1.6 = |x− y|

Then, we have

α |T3x− y|+α |T3y− x|+(1−2α) |x− y| = α

∣∣∣∣72 −3.4
∣∣∣∣+α

∣∣∣∣3.42
−5
∣∣∣∣+(1−2α) |5−3.4|= 1.6+(0.2)α

<

∣∣∣∣72 − 3.4
2

∣∣∣∣= 1.8 = |T3x−T3y| .

Hence T3 is not a generalized 3
4−nonexpansive mapping.

Let an = bn = cn = 0.75 for all n ∈ N. We compute that the sequence {xn} generated by iterative schemes (1.1)-(1.4) converge to a fixed
point 0 of Ti, i = 1,2,3, which is shown by the Table 1. Also we compute that the sequences {xn} generated by iterative schemes (1.1)-(1.4)
converge to a common fixed point 0 of Ti, i = 1,2,3, which is shown by Figure 1.

Table 1: Sequences generated by (1.1)-iteration, (1.2)-iteration, (1.3)-iteration and (1.4)-iteration for Ti, i = 1,2,3, mappings defined in Example 3.1, Example
3.2 and Example 3.3.

(1.1)-iteration (1.2)-iteration (1.3)-iteration (1.4)-iteration
x1 5.0000000000 5.0000000000 5.0000000000 5.0000000000
x2 1.1523437500 0.7058105469 1.0000000000 1.5136718750
x3 0.1575469971 0.0591047406 0.1250000000 0.3695487976
x4 0.0215396285 0.0049494448 0.0156250000 0.0902218744
x5 0.0029448711 0.0004144677 0.0019531250 0.0220268248
x6 0.0004026191 0.0000347076 0.0002441406 0.0053776428
x7 0.0000550456 0.0000029064 0.0000305176 0.0013129011
x8 0.0000075258 0.0000002434 0.0000038147 0.0003205325
x9 0.0000010289 0.0000000204 0.0000004768 0.0000782550
x10 0.0000001407 0.0000000017 0.0000000596 0.0000191052
x11 0.0000000192 0.0000000001 0.0000000075 0.0000046644
x12 0.0000000026 0.0000000000 0.0000000009 0.0000011388
x13 0.0000000004 0.0000000000 0.0000000001 0.0000002780
x14 0.0000000000 0.0000000000 0.0000000000 0.0000000679
x15 0.0000000000 0.0000000000 0.0000000000 0.0000000166
x16 0.0000000000 0.0000000000 0.0000000000 0.0000000040
x17 0.0000000000 0.0000000000 0.0000000000 0.0000000010
x18 0.0000000000 0.0000000000 0.0000000000 0.0000000002
x19 0.0000000000 0.0000000000 0.0000000000 0.0000000000
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Figure 3.1: Convergences of (1.1)-iteration, (1.2)-iteration, (1.3)-iteration and (1.4)-iteration to the common fixed point 0 of Ti, i = 1,2,3, mappings defined
in Example 3.1, Example 3.2, Example 3.3.
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