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Abstract

In this paper, we consider a new class of nonlinear mappings presented in [12] that generalizes two well-known classes of nonexpansive
type mappings and extends some other classes of mappings. We introduce approximating common fixed point of three C-& nonexpansive
mappings through weak and strong convergence of an iterative sequence in a uniformly convex Banach space. We also numerically illustrate
the common fixed point approximations of the presented iteration for the three C-a nonexpansive mappings.
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1. Introduction and Preliminaries

Throughout this paper, K be a nonempty convex subset of a Banach space X and ¢ : K — K be a mapping. We denote by F(T) the set of
3
fixed points of 7. We denote by F = .ﬂlF(Ti) the set of a common fixed points of 7; : K — K,i =1,2,3.
=

A mapping T is called nonexpansive if |Tx— Ty|| < |lx—y||, for all x,y € X. T is called quasi-nonexpansive if F(T) # @ and ||Tx— p|| <
|lx— pl|, for all x € X and p € F(T). In the past decades, many authors have been interested in some generalizations of nonexpansive
mappings and established many iterative processes to approximate fixed points for generalized nonexpansive mappings(see [2], [3], [5], [10],
[11], [12], [14], [18], [22], [23]). In 2008, Suzuki [14] introduced the concept of generalized nonexpansive mappings which is a condition
on mappings called condition (C) (herein referred as Suzuki generalized nonexpansive mapping), which properly includes the class of
nonexpansive mappings. Let K be a nonempty closed and convex subset of a uniformly convex Banach space X. A mapping 7 : K — K is
satisfy condition (C) if for all x,y € K %fo Tx|| <|x—yl| = |[Tx=Ty| < |x—y].

Suzuki [14] showed that the mapping satisfying condition (C) is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.
Lately, fixed-point approaches for Suzuki generalized nonexpansive mappings have been studied by a number of authors see e.g ([1], [4], [6],
[15], (191, [20D).

In 2011, Aoyama and Kohsaka [3] introduced the class of @—nonexpansive mappings in the setting of Banach spaces and obtained some
fixed point results for such mappings. Let K be a nonempty closed and convex subset of a uniformly convex Banach space X. A mapping
T : K — X is called a a—nonexpansive mapping if there exists an & € [0, 1) such that for each x,y € K

T = Ty|* < et Tx = > + etllx = Tyl + (1 = 200) | — y|*.

Note that Ariza-Ruiz et al. in [2] showed that the concept of ¢—nonexpansive mapping is trivial for o¢ < 0. It is obvious that every
nonexpansive mapping is 0—nonexpansive and also every ot—nonexpansive mapping with a fixed point is quasi-nonexpansive (see [7] ).
In [11], authors introduced the following class of nonexpansive type mappings and obtained some fixed point results for this class of
mappings. A mapping T : K — K is called a generalized a-—nonexpansive mapping if there exists an o € [0, 1) and for each x,y € K

1
5l =Txl| < llx =yl = ITx =Tyl < &l Tx =yl + e[| Ty — x]| + (1 = 2a) [ - y]].

More recently, a number of authors have been studied for numerical reckoning fixed points of generalized ot—nonexpansive mappings see
e.g ([13], [16], [17]). In general, condition (C), cc—nonexpansive mapping and generalized o:—nonexpansive mapping are not continuous
mappings (see examples [2], [4], [11], [14], [15], [16], [17]).
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Furthermore, in [12], authors presented the following new class of nonexpansive type mappings and obtained some fixed point results for
this new class of mappings.
A mapping T : K — K is called C-o nonexpansive mapping if there exists an « € [0, 1) and for each x,y € K,

1
b= 7] < [lx— v implies
T~ Ty|[2 < al| T — 1P + tllx — Ty|? + (1 — 200) [y 2.

A mapping satisfying the condition (C) is C-o nonexpansive mapping. An oc—nonexpansive mapping is a C-& nonexpansive mapping and
also generalized ox—nonexpansive mapping is a C-0&¢ nonexpansive mapping, but from the examples given in [12] it can be seen that the
reverse is not true.

The concept of approximating fixed points for generalized nonexpansive mappings plays an important role in the study of three-step iteration
processes. Pant and Shukla [12] studied the Noor iteration scheme for C-o nonexpansive mapping. In 2000, Noor introduced the first
three-step iteration scheme [8] and defined the following process: for arbitrary x| € K construct a sequence {x, } defined by

= (I—cp)xn+enTxy
Yn = (1 —bn)Xn+bnTZn
Xpr1 = (I—ap)xn+nTyy,¥neN

where {a,},{b,} and {c,} € (0,1).
Inspired and motivated by these facts, we introduce the following iterative scheme for three C-& nonexpansive mappings in uniformly convex
Banach spaces. Let K be a nonempty convex subset of a Banach space X and 7; : K — K, i = 1,2,3 be mappings. Then for arbitrary x| € K,
the scheme is defined as follows:
zn = (1—cp)xn+cnTixn
Yn = (1_bn)Zn+bnT21n (1.1)
Xpe1 = (1 —an)yn +anTayn,Vn €N,

where {an}, {b,} and {c, } in (0, 1).

We then present the following three iteration schemes to approximate the fixed point for three mappings.

Let K be a nonempty convex subset of a Banach space X and 7; : K — K, i = 1,2, 3, be mappings. Then for arbitrary x; € K, the scheme is
defined as follows:

= (1=cp)xn+cnTixy
Yn = (1 7bn)Zn +bnTiZn
Xpp1 = (1 —an)yn +anTiyn,Yn € N,

where {ay}, {b,} and {c, } in (0, 1).

In this paper let say the iterations: (1.2) for i = 1, (1.3) for i = 2, and (1.4) for i = 3, respectively. The aim of this paper is to introduce and
study convergence problem of three-step iterative sequence (1.1) for three C-o nonexpansive mappings in uniformly convex Banach spaces.
The results presented in this paper generalize and extend some recent [12].

The following definitions will be needed in proving our main results.

A Banach space X is said to be uniformly convex if the modulus of convexity of X

_ x4y

8(e) = inf{1-—

il =1yl = 1l =yl = €} >0,

forall0 <e <2 <i.e., d(€) is a function (0,2] — (O, 1))
Recall that a Banach space X is said to satisfy Opial’s condition [9] if, for each sequence {x,} in X, the condition x,, — x weakly as n — oo
and for all y € X with y # x imply that

h}gi;lfon —x| < linrr_l)iEfo,, -y
Let {x, } be a bounded sequence in a Banach space X. For x € X, we set
r(x,{x,}) = limsup ||x, —x]|.
n—soo
The asymptotic radius of {x,} relative to K is defined by
r(K,{xp}) = inf{r(x,{x,}) :x € K}.
The asymptotic center of {x,} relative to K is the set
AK, {xn}) ={x e K :r(x,{x,}) = r(K,{xn})}.
It is known that, in uniformly convex Banach space, A(K, {x,}) consists of exactly one-point.

Lemma 1.1. [2]]. Let r > 0 be a fixed real number. Then a Banach space X is uniformly convex if and only if there is a continuous strictly
increasing convex function g : [0,00) — [0,00) with g(0) = 0 such that

2+ (1= )yl < Al + (1= 2) 31 = 2.1 = A)g (Jbe— 1))

forallx,y e B, :={xeX :|x| <r}and A €0,1].
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We now list some properties of mapping that satisfy C-o¢ nonexpansive mapping. In what follows, we shall make use of the following
lemmas.

Lemma 1.2. Let K be a nonempty closed and convex subset of Banach space X. Let T : K — K be a C-a nonexpansive mapping for some
o €1[0,1) such that F(T) # 0. Then T is a quasi-nonexpansive.

Proof. Letxe Kand p € F(T . Then we have 4 p—Tp|| =0 <||p—x| implies that
2 P

ITx—pl? = |Tx-Tp|?
< afTx—pl? +alx—Tp|? + (1 -2a)|x—p|
< afTx—pl? +alx—p|* + (1 - 2a)|x—pl
< afTx—pl?+(1-a)|x—p|*
So, we have || Tx— p||* < &||lx— p||. 0

Lemma 1.3. [12]. Suppose that K is a nonempty subset a Banach space X and T : K — K is a C-o nonexpansive mapping. Then F(T) is
closed. In addition, if K is convex and X is strictly convex, then F (T) is convex.

Proposition 1.4. [12]. (Demiclosedness principle). Assume that K is a nonempty subset of a Banach space X which has the Opial
property and T : K — K is a C-o nonexpansive mapping. If {x,} converges weakly to a point p and IEH |ITxy —xn|| =0, then Tp = p. That
frares

is, I — T is demiclosed at zero, where I is the identity mapping on X.

2. Main results

In this section, we prove the three-step iterative scheme (1.1) to converge to a common fixed point for three C-o nonexpansive mappings in
uniformly convex Banach space.

Lemma 2.1. Let K be a nonempty bounded, closed, convex subset of a uniformly convex Banach space X. T; : K — K, i = 1,2,3, be three
C-o nonexpansive mappings for & € [0,1) with F # 0. For arbitrary chosen xo € K, {x,} be a sequence generated by (1.1), then we have,
for common fixed point p of T;, i=1,2,3, lign ||xn — p|| exists.

n—oo

Proof. From Lemma 1.2, forany pe F,xe KandT;: K — K, i =1,2,3, are C-o nonexpansive mappings , then we have for eachi =1,2,3,
= Tipll = 0 < ||p — || implies that

| Tix — Tip||?

al|Tx— p||> + allx — Tip|* + (1 —2a) |x — p||? @.1)
al|Tix — pl* + allx — p||* + (1 — 2a) |x — p||?

al|Tx— pl* + (1 — a)x— p|*.

|1 Tx— pl?

INIA TN

So, for each i = 1,2,3, || Tix — p||? < &||x — p||%. Thus for each i = 1,2,3, T; C-& nonexpansive mappings are quasi-nonexpansive.
Now, using (1.1) and (2.1), we have,

lze —pll = (1 —ca)xn+cnTixn —pl (2.2)
= (1 =ecn)(xn—p) +ca(Tixn —p)|l

< (T=ca)llxn = pll +callTrxn — pl|
< (T=ca)llxn = pll +callxn = pll = llxa — plI-
Using (1.1), (2.1) and (2.2), we get
lyn—pll = (1 =bp)zn+buToza —pl| (2.3)

”(1 *bn)(zn *P) +bn(T22n *P)H
(1="bn)llzn = pll + bul| Tozn — p|
(L=bn)llzn — Pl + ballza — Il = [lzn — Pl < [lxn = pI|-

ININ

By using (1.1), (2.1), (2.2) and (2.3) , we get

Hanrl_pH = H(l_an)yn “'anTS)’n_PH
I(1 = an)(yn — p) + an(T3yn — p) |l

< (I=an)lyn—pll+anl| T3y, = pll
< (I=an)lyn—pll+anlly. —pl
= yn=rpl <l —=pll.
Thus we have
%1 =Pl < o = pll-
This implies that {||x, — p||} is bounded and non-increasing for each p common fixed point of 7;, i =1,2,3. It follows that ,}520 llx: — Pl

exists. O
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Theorem 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space X. T; : K — K, i =1,2,3, be C-& nonexpansive
mappings for & € [0, 1), common fixed point p of T;, i =1,2,3, and {ay,}, {b,} and {c,} be real sequences in (0,1). Let {x,} be a sequence
in K defined by (1.1), and parameters satisfy one of the following conditions:
(1) Iflimsupa, <1 and liminf a,(1 —ay) >0,
n—soo n—reo

(2) Iflimsupb, < 1 and liminf b,(1 —by,) >0,
n—soo n—ee

(3) Iflimsupc, < 1 and liminf ¢, (1 —¢,) > 0.
n—yoo n—eo

Then F # 0 if and only if {x, } is bounded and nggo|\T1xn —Xu|| =0, lim | 1220 —2za|| = O, Jim | T3y —yul =0, Jlim llzn — x4l = OVJLIE,HZ” -

yull =0, lim |y, —x,|| =0, im ||T3x, — x,|| =0, lim ||T3x, —x,]| = 0.
n—oo n—oo n—yoo

Proof. By Lemma 2.1, we know that nlgr;”x,, — pl| exits for any p € F. Then the sequence {x,} is bounded. 7;: K — K, i =1,2,3,

are C-o nonexpansive mappings and 7; : K — K, i = 1,2,3, has a common fixed point p. From (2.1) and Lemma 2.1, we see that
My = sup{||xull; |zall, |n 1 1T X0l | T2zn ||, | T3Ynl] : n € N} < eo. Also from (1.1), (2.1) and Lemma 1.1 , we have

[zn _PH2 = [[(1=cn)xn+caTixy _P)H2
= [[(1=cn)(xa—p)+cn(Tixn *P)Hz

(1= )l =PI+ all i = pI = eu(1 = ) (8 (ot — Tiall) )
(=)l =PI+ €allsn =PI = a1 = o) (ghn — Tial) )

oo = I = cn(1 = o) (g (Ia — Tiall) ).

INIA

Thus we have
len =PI < llea = pI2 = cn(1=ca) (o = Timall) ). 24

Now by (1.1), (2.1), (2.4) and Lemma 1.1, we have

(1= bw)zn + baToza — p|?
(1 =bn)(zn — ) +ba(T2za — p)|I*

lyn — plII?

< (1=bn)llzn =PI +ballzn =PI = ba(1 = b2) (g (120 — Tzl )
< ln—plP = a1 =) (g(llen = Bozall) ) a1 = ) (g (oo = Tial ) ).
So we have
a=pl? < lva=pl2 = bu(1=b0) (81720~ Toal ) ) 25)

—cn(1—cp) (g(”Tlx,, —xn||))

Moreover, by (1.1), (2.1), (2.5) and Lemma 1.1, we have

e = pIP = 111 = @)y + @ T = pI> < (1= an)lyn = pIP + anll Tsyn = I = an(1 = an) (g Iy — Tavull) )

< (1=a)ln— I+ anllvn = oI = an(1 = an) (g Iyn = Tovull) )
< a2l = an(1—=an) (v = To3all) ) = b1 =) (8 (llzn ~ T2l ))
~en(1 =) (8 (o~ Tixal ) )
< o= pIP = an(t=an) (8 (I = Tsvall) ) = a1 =) (¢ (Il = Tazall ) ) = n (1 = en) (¢ (Ibwn = Tl ) )

Thus we have
w1 =pI2 < =PI = (1 =) (g (In = Tovall) ) = ba(1 = 2) (l1zn = T2zall) )
—ea(t=co) (8(Ja =Tl ))

From the last inequality, we have

an(t=a) (g(Ion=T3all)) < (= plP = Ionss = pI1?), 2:6)

IN

bu(1=ba) (gl =Tozall)) < (lon—pIP = s = o). @7
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and

en1=c) (g (o~ Tixall)) < (1w —all® = lowsa = pI)- @3)

By condition limsup a, < 1 and lirginf an(1—ay,) > 0, then we have
n—yoo n—ree

}ggog<\\yn - TsynH) =0.
From g is continuous strictly increasing with g(0) = 0 then we have
Jim [ly, — T3y = 0. 2.9

By using a similar method for inequalities (2.7) and (2.8) we have

lim ||z, — Taza|| = O. (2.10)
n—soo
and
lim ||T1x, — x,|| = 0. (2.11)
n—oo
Next, from (1.1) and (2.11), we have
lzn —xall < ||(1 = cn)xn + cnTixn — xn| (2.12)
< (en)||Tixn —xnl|— 0 as n— oo.
Also, from (1.1) and (2.10), we have
HYn_Zn” < ”(l_bn)Zn +bnT2Zn_Zn|| (2.13)
< (bn)||Tazn —zn|| = 0 as n— oo
By (2.10) and (2.12) we have
T2z — xn|l < | Tazn — znl| + ||z — Xul|—= 0 as n— oo, (2.14)
Moreover from (2.12) and (2.13)
lvn = xall < llyn = znll + l|zn — Xn||—= 0 as n— oo (2.15)
By (2.9) and (2.15) we have
(T390 — 2|l < [|T3yn = yull + [[yn — Xnll—= 0 as n — oo. (2.16)

Next
2 2
1Tt =2l < (1T = Totall + | Toza —
_ 2 2
= ITova = Dozl + 1oz — 2l +2(1Fon — Tozall | oz — 2 )
< | Toxn—zall® + @l Taza —xal* + (1= 200) [P0 — 2al|* + 4M1 || Tazn — zal| + || Tazn — 2al |

Then from (2.10), (2.12) and (2.14), we obtain

o (1-2a) 4M, 1
Toxn—zal? < ——|Tozn — xal* + L xn — znl P+ || Tozn — || Dz — 2| 2.17
” 2Xn Zn” = ]—OC” 22n xn” + (l—a) ||xn ZnH +(1—(X)|| 22n Zn”+(1_a)‘| 22n ZnH ( )
Thus from (2.12) and (2.17) we obtain
| T2xn — xn|| < | T2%n — zul| + llzn — Xn]|— 0 as n — eo. (2.18)
Next
) 2
ITsw =yl < (150 = Tyl + [Ty —vall
= 11735 — Toval 2+ 1 Tsyn =3l + 2 (U350 = T33all | Tsyn =3l )
< O‘HT3xn*YnHZJFa”TSyn*xn”er(l*za)”xn*YnHzﬂL“'MlHTS)’n*)’nH+||T3)’n*)’n||2~



Konuralp Journal of Mathematics 189

Then from (2.9),(2.15) and (2.16) we obtain

o 1-2a am 1
T30 —yu|)* < mHTsyn—xn\|2+ﬁ”xn—ynHz'Fﬁ”ﬁyn—yn\|+m“T3yn—ynH2—>0 as n—»oco.
Thus from (2.15) and (2.19) we obtain
| T3xn — xn|| < | T3%0 — Yl + ||yn — Xn]|— 0 as n— eo. (2.19)

Thus from (2.11), (2.18) and (2.19) we obtain
lim || T3x, —x,|| =0, lim ||Tox, —x,|| =0 and lim ||Tjx, —x,| = 0.
n—yoo n—oo n—oo

Conversely, assume that {x, } is bounded and ILm | T3, — x| =0, 1Lm T2, —xn|| =0 and ILm ||T1x, — xn|| = 0. For each i = 1,2, 3, there
n—oo n—oo n—soo
are bounded subsequences {7;x,, } of {T;x, } such that klim | Tixn, — x5, || = 0. Suppose p € A(K, {xp, }). Let My = sup{||xy, ||, | Tixn, ||, | Tipll, 1P| =
o0
keN, i=1,2,3} <oo. For o € [0,1) and i = 1, by Lemma 1.2, we obtain

2
e =Tipl2 < (I = Tt |+ [T = Tip)
= o = Tictn |+ 1%, = T3 pI2 42 (o, = Tt i, — T2
< allTin, = I+ @, — Tipl2+ (1 =200 [, = pI2+ 2Tk, = Ty p bt = Tig 1) + [, = T |2

(=) ~Tipl? < (1 @)l Tin, =PI+ 2 (@t = plln, — Tosa ]| ) +
2l = T, = Tl ) g = T [+ (1= 0) i — I

Thus we have

o= TiplP < G Tt = P+ s (@l ol = Tupl i, ~ To |+ = pIP. 220)
Therefore
I =TiplP < G T = ol D s~ i+l =l
Take the both side limsup, then we have
limsup ||x,, — Tlsz < (1+0a) limsup || T xp, —p||2 + M limsup ||x,, — T1%, || + limsup || xp, —sz.
k—eo (1-a) fe (I-a) e koo

Thus we have for 71 : K — K, i=1
r(T1p7 {xnk}) = limsup ||x’lk - T]p” < limsupHx,,k _pH = r(p, {x’lk})'
k—yoo k—oo
This implies that for i = 2,3, we also obtain
r(Top, {xu }) =limsup ||x,, — Top|| < limsup|lxy, — pl| = r(p,{xn, })
k—yo0 k—o0
and

r(T3p, {x'lk}) = Emsup ”'Xnk —Tsp|l < limsupHxnk _pH =r(p, {x”k})'
300

k—so0

These mean that for each i = 1,2,3, T;p € A(K,{xp, }). Since X is uniformly Banach space, A(K, {x,}) is singleton, hence for each i = 1,2,3,
T;p = p. This completes the proof. O

In the next result, we prove the weak convergence of the iterative scheme (1.1) for three C-& nonexpansive mappings with o € [0,1) in a
uniformly convex Banach space satisfying Opial’s condition.

Theorem 2.3. Let X be a uniformly convex Banach space satisfying Opial’s condition and K be a nonempty closed convex subset of X. Let
T,: K — K, i=1,2,3, be three C-a nonexpansive mappings for o € [0,1). Assume that p € F is a common fixed point of T;, i = 1,2,3. Let
{xn} be a sequence in K defined by (1.1) where {ay}, {b,} and {c,} are real sequences in (0,1) and satisfy the conditions of Theorem 2.1.
Then {x,} converges weakly to a common fixed point of p T;,i=1,2,3.
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Proof. Since F # 0, it follows from Lemma 2.1 that lign |lx» — p|| exists. Now, we show that {x, } has a unique weak subsequential limit
frarest

in F. We assume that @; and @, are weak limits of the subsequences {x,, } and {x,} of {x,}, respectively. From Theorem 2.1, we have
lijn | T35, — x| = 0, 1ijn | T2x, — xp|| = 0 and 1ijn |71 — xp|| = 0. Moreover by Proposition 1.1, I — T; for i = 1,2,3 are demiclosed
n—oo n—oo n—soo

at zero. This implies that (I — T;)w; =0, i = 1,2,3, that is T;0; = o, i = 1,2,3. Similarly Tj@, = @,, i = 1,2,3. Now, we show the
uniqueness. If @; # @,, then by the Opial’s condition, we have

lim [lx, — o] = 1im [xn; — ]| < lim [|x,; — @[] = lim |Jx, — @]
n—yoo Jyeo J—roo n—eo

klij;”xnk — | < ]lgrolc”xm —oif| = ,}g{}c”xn —o

This is a contradiction. So, @; = @,. Therefore {x,} converges weakly to a common fixed point of 7;,i = 1,2,3. This completes the
proof. O

Finally, we prove our strong convergence theorem as follows.

Theorem 2.4. Let X be a real uniformly convex Banach space, K be a nonempty compact convex subset of X and for e € [0,1), T; : K —
K, i=1,2,3, be three C-a nonexpansive mappings with F # 0. Let {x, } be a sequence in K defined by (1.1) where {an}, {b,} and {c,} in
(0,1) for all n € N, and satisfy the conditions of Theorem 2.1. Then {x,} converges strongly to a common fixed point of T;, i =1,2,3.

Proof. By Theorem 2.1, we have 1211 | T3xn — x4]| = 0, 1211 I T2xn — x,|] = 0 and ILm IT1xn, — x,|| = 0. Since K is compact, there exists
n—oo n—o0 n—oo

a subsequence {x,, } of {x,} such that x,, — p as k — oo. Let M3 = sup{||xn. ||, || Txn ||, | TiP|l, IIp]| : k € N,i =1,2,3} < oo. Then from
(2.20), choose i = 1, by Lemma 1.2, we obtain for & € [0, 1)

%, = ThplI” < (I—a) (71 %0, — pI” + annk = Tixue|| + [lxn, — Pl
Letting k — oo, we get T} p = p. By using a similar method, p = T p and then we have p = T3p. Thus we have {x,, } converges to common
fixed point p of T;,i = 1,2,3. Since by Lemma 2.1, ligrl |lx» — p|| exists for every p € F, so {x,} converges strongly to a common fixed
n—yoo
point of 7;,i=1,2,3. O

3. Examples

Now we give the examples of 7; : K — K, i = 1,2,3, be three C-a nonexpansive mappings with a € [0,1) which are not generalized
o—nonexpansive mappings.

Example 3.1. Let K = [0,5] C R endowed with usual norm in R. Define a mapping Ty : K — K by

I, Xx#5
Tix={ &
1* %, x=5

To verify that for o0 = %, TyisaC —% nonexpansive mapping, we consider the following cases:
Case I:If x,y # 5, then

3 3 1
a|Tix—yP +alTy—x +(1-20)x—y* = J|Tix—yl+ 7 [Ty = 5 lv—yf
= 2G0T+ (=0T = 50-y)
3,1, 1 e 3,1, 1 se 1, 1,
= qlGer Tt glgey T ) S oy
3, 3 3, 3, 3 3, 1, 1,
= et TRV e YT ey
11\ 15, 15, 3 112 )
= Zx—— - e “xy>|cx——y| = - .
(4x 4y) tat Ta) eV || = Ihx-Tol
Case II:If x =5,y # 5, then
2 2 2 3 2, 3 2 1 2
alTix =yl +alTiy—x"+ (1 =20) fk—y[" = Z{Te—y"+ 7 [Tiy =" = 5 |x =]
= (g y=5"-36-y)
3169 13, 3,1, 5 25 1,
= Z(—=-= 2=y —2y4+25)— = 45y~
206 ~ YY) )y oy
13 1., 15, 1 231 _[13 1 )
- (22 22y 20120 I mx— T2,
(=) ey — @t e 2|7 | =TTl

Since fory € [0,5), 5 z_ %y+ % >0, then Ty isa C-% nonexpansive mapping.
Contrarily at x =3,y = 5; we get

1 1 3 9
—x—Tix|=z3——|==-<2=|x—y|.
b= Ti 2\ 4\ - <2=h—]
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Then, we have

o|Tix—y[+a|Ty —x|+ (1 -20a) [x—y]|

, . 3 . .
Hence T is not a generalized 3 —nonexpansive mapping.

Example 3.2. Let K =

T2x:{

3 1
S = 1-2a)|3-5|=2+~
‘4 5'4—05‘ 3’ ( o)|3-75| +2oc
3 13 10

| = =24 - =|Tix—Tyy|.

‘4 2 2 +2 |T1x— Tyl

[0,5] C R endowed with usual norm in R. Define a mapping T, : K — K by
X

, 5
3 7

11
3 )

x=5

To verify that for o = 3, Ty is a C-2 nonexpansive mappin , we consider the following cases:
1 12 1 P pping 8

Case L:If x,y # 5, then

a|Dx—y+o|Ty—x+(1-20) [x—y* =

Case II:If x =5,y # 5, then

a|Bx—yP +a|hy—xf +(1-2a) x—y? =

Since %yz — %y—o— 29—6 >0, Thisa C—% nonexpansive mapping.

Contrarily at x =3,y = 5; we get

1 1 3
Clh—Pxl==13—-Z=1<2=|x—
bt =3 3= =1<2= ey

Then, we have

o|Tox—y[+a|Toy — x|+ (1 -20a) [x—y]|

, . 3 . .
Hence T, is not a generalized 7 —nonexpansive mapping.

Example 3.3. Let K =

T3x:{

[0,5] C R endowed with usual norm in R. Define a mapping Tz : K — K by

To verify that for oo = %, TzisaC —% nonexpansive mapping, we consider the following cases:

Case I:If x,y # 5, then

o|Tx—y[ +a|Tyy— x> + (1 -2a) [x—y?

3 3 1

Z\sz—y|2+f\T2y—x|2—§|x—y|2

31 3,1 2 1 2

1 Y+ 1370 = 56-y)

3.1, 2 2, 3.1, 2 1, 12

1(5* 3xy+y)+4(9y 3Xy+X) X Ay =5y

3. 1 +ﬁ+ﬁ 1 +3L 1o 1p

36" 2 4 "36 29T 2’“ v 2y
1 3 1 1 3 1. 1 1

20 1 2 1 2 o2 -2 22

gty ) tr(gty—3)=3+3

11 2 11

(gx—gy)2+§(x2+y2+xy) Z 333 = | Tox — Toy[.
Isz v+ Isz x? **Ix y?

3 n ., 3 1

4(3 -) +4(3y 5)? —E(S—y)

3121 22,0 3,1, 10 25 1,
== (2 — —y+25)— 45y~
2o Tyt Gy s gy 2S) - Ay oy
1 1., 2, 5 26 |11 1 >
= e 2> 2y = mx— Dy,
(3 3y)+9y Pdto 23 |T2x — Thy|
3 11 2
2 5 — 1-20)[3-5|=2+2=
a‘3 ‘+a 3 ‘+( a)|3 -5 t3@

S T
33| 3 ‘Tzl
5, X#S
%, x=35
3
4\T3x W+ \Tsy x? —*|X y?
31 3 1 1

= Z(Ex—y)z 4(2y X)Z—E(X—Y)

3,15 31, 1, 1,
2(G¥ —oty )+4(4y —xy+x )*Ex Fay =5y
_ 3 3,030,300 3 32 1o 10
T A R T R Lk L it
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303 1 303 1.1 7 7 1
_ 2/ 22 202 2 2y _ 2 :72 22
= Yty )t ) T gt e Y
= (1 1)2+ 2, 30500 ] 2*|T Tsy)?
YT T e T1er <2t Y T Y

Case IL:If x =5,y # 5, then

3 3 1
a|Bx—yP +a|By—xf +(1-2a) x—y? = Z\sz—y|2+1|T3y—x|2—§|x—Y|2

= G435 56
= Z(?—hﬂz)v&(%—5y+25)—§+5y—%y2
- 17—6);27)/ 2;467=(;;y)2+]36y2;y+fé_'z;y2=|T3XT3y|

Since % 2 %y—k % >0, then T3 is a C-% nonexpansive mapping.

Contrarily at x =5,y = 3.4; we get

1 1 7 3
—|x— = — ——|=—==0. <16=|x—
2|x T3x]| 2’5 2‘ 2 0.75<1.6=|x—y|
Then, we have
7 34
o|Bx—yl+o|ly—x|+(1-20)|x—y] = « 5—3.4 +a 7—5 +(1-2a)|5-34/=1.6+(02)x
7 34

, . 3 . .
Hence Tx is not a generalized 3 —nonexpansive mapping.

Let a, = b, = ¢, = 0.75 for all n € N. We compute that the sequence {x,} generated by iterative schemes (1.1)-(1.4) converge to a fixed
point 0 of 7;, i = 1,2,3, which is shown by the Table 1. Also we compute that the sequences {x, } generated by iterative schemes (1.1)-(1.4)

converge to a common fixed point 0 of 7;, i = 1,2,3, which is shown by Figure 1.

Table 1: Sequences generated by (1.1)-iteration, (1.2)-iteration, (1.3)-iteration and (1.4)-iteration for 7;, i = 1,2, 3, mappings defined in Example 3.1, Example

3.2 and Example 3.3.

(1.1)-iteration | (1.2)-iteration | (1.3)-iteration | (1.4)-iteration
x1 | 5.0000000000 | 5.0000000000 | 5.0000000000 | 5.0000000000
xp | 1.1523437500 | 0.7058105469 | 1.0000000000 | 1.5136718750
x3 | 0.1575469971 | 0.0591047406 | 0.1250000000 | 0.3695487976
x4 | 0.0215396285 | 0.0049494448 | 0.0156250000 | 0.0902218744
x5 | 0.0029448711 | 0.0004144677 | 0.0019531250 | 0.0220268248
x¢ | 0.0004026191 | 0.0000347076 | 0.0002441406 | 0.0053776428
x7 | 0.0000550456 | 0.0000029064 | 0.0000305176 | 0.0013129011
xg | 0.0000075258 | 0.0000002434 | 0.0000038147 | 0.0003205325
x9 | 0.0000010289 | 0.0000000204 | 0.0000004768 | 0.0000782550
x10 | 0.0000001407 | 0.0000000017 | 0.0000000596 | 0.0000191052
x11 | 0.0000000192 | 0.0000000001 | 0.0000000075 | 0.0000046644
x12 | 0.0000000026 | 0.0000000000 | 0.0000000009 | 0.0000011388
x13 | 0.0000000004 | 0.0000000000 | 0.0000000001 | 0.0000002780
x14 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000679
x15 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000166
x16 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000040
x17 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000010
x1g | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000002
x19 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
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Figure 3.1: Convergences of (1.1)-iteration, (1.2)-iteration, (1.3)-iteration and (1.4)-iteration to the common fixed point O of 7;, i = 1,2,3, mappings defined
in Example 3.1, Example 3.2, Example 3.3.
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