Approximating Common Fixed Point of Three C - α Nonexpansive Mappings

Seyit Temir ${ }^{1 *}$ and Zeynep Bayram ${ }^{2}$
${ }^{1}$ Department of Mathematics, Art and Science Faculty, Adiyaman University, 02040, Adiyaman, Türkiye
${ }^{2}$ Department of Mathematics, Graduate Education Institute, Adlyaman University, 02040, Adlyaman, Türkiye
*Corresponding author

Abstract

In this paper, we consider a new class of nonlinear mappings presented in [12] that generalizes two well-known classes of nonexpansive type mappings and extends some other classes of mappings. We introduce approximating common fixed point of three $\mathrm{C}-\alpha$ nonexpansive mappings through weak and strong convergence of an iterative sequence in a uniformly convex Banach space. We also numerically illustrate the common fixed point approximations of the presented iteration for the three $C-\alpha$ nonexpansive mappings.

Keywords: Local Fractional Derivative; Dirichlet boundary conditions; Spectral method; Separation of variables.
2010 Mathematics Subject Classification: 26A33; 65M70.

1. Introduction and Preliminaries

Throughout this paper, K be a nonempty convex subset of a Banach space X and $\varphi: K \rightarrow K$ be a mapping. We denote by $F(T)$ the set of fixed points of T. We denote by $F=\bigcap_{i=1}^{3} F\left(T_{i}\right)$ the set of a common fixed points of $T_{i}: K \rightarrow K, i=1,2,3$.
A mapping T is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$, for all $x, y \in X$. T is called quasi-nonexpansive if $F(T) \neq \emptyset$ and $\|T x-p\| \leq$ $\|x-p\|$, for all $x \in X$ and $p \in F(T)$. In the past decades, many authors have been interested in some generalizations of nonexpansive mappings and established many iterative processes to approximate fixed points for generalized nonexpansive mappings(see [2], [3], [5], [10], [11], [12], [14], [18], [22], [23]). In 2008, Suzuki [14] introduced the concept of generalized nonexpansive mappings which is a condition on mappings called condition (C) (herein referred as Suzuki generalized nonexpansive mapping), which properly includes the class of nonexpansive mappings. Let K be a nonempty closed and convex subset of a uniformly convex Banach space X. A mapping $T: K \rightarrow K$ is satisfy condition (C) if for all $x, y \in K \frac{1}{2}\|x-T x\| \leq\|x-y\| \Rightarrow\|T x-T y\| \leq\|x-y\|$.
Suzuki [14] showed that the mapping satisfying condition (C) is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness. Lately, fixed-point approaches for Suzuki generalized nonexpansive mappings have been studied by a number of authors see e.g ([1], [4], [6], [15], [19], [20]).
In 2011, Aoyama and Kohsaka [3] introduced the class of α-nonexpansive mappings in the setting of Banach spaces and obtained some fixed point results for such mappings. Let K be a nonempty closed and convex subset of a uniformly convex Banach space X. A mapping $T: K \rightarrow X$ is called a α-nonexpansive mapping if there exists an $\alpha \in[0,1)$ such that for each $x, y \in K$

$$
\|T x-T y\|^{2} \leq \alpha\|T x-y\|^{2}+\alpha\|x-T y\|^{2}+(1-2 \alpha)\|x-y\|^{2} .
$$

Note that Ariza-Ruiz et al. in [2] showed that the concept of α-nonexpansive mapping is trivial for $\alpha<0$. It is obvious that every nonexpansive mapping is $0-$ nonexpansive and also every $\alpha-$ nonexpansive mapping with a fixed point is quasi-nonexpansive (see [7]). In [11], authors introduced the following class of nonexpansive type mappings and obtained some fixed point results for this class of mappings. A mapping $T: K \rightarrow K$ is called a generalized α-nonexpansive mapping if there exists an $\alpha \in[0,1)$ and for each $x, y \in K$

$$
\frac{1}{2}\|x-T x\| \leq\|x-y\| \Rightarrow\|T x-T y\| \leq \alpha\|T x-y\|+\alpha\|T y-x\|+(1-2 \alpha)\|x-y\| .
$$

More recently, a number of authors have been studied for numerical reckoning fixed points of generalized α-nonexpansive mappings see e.g ([13], [16], [17]). In general, condition (C), $\alpha-$ nonexpansive mapping and generalized $\alpha-$ nonexpansive mapping are not continuous mappings (see examples [2], [4], [11], [14], [15], [16], [17]).

Furthermore, in [12], authors presented the following new class of nonexpansive type mappings and obtained some fixed point results for this new class of mappings.
A mapping $T: K \rightarrow K$ is called C - α nonexpansive mapping if there exists an $\alpha \in[0,1)$ and for each $x, y \in K$,

$$
\begin{aligned}
& \frac{1}{2}\|x-T x\| \leq\|x-y\| \text { implies } \\
& \|T x-T y\|^{2} \leq \alpha\|T x-y\|^{2}+\alpha\|x-T y\|^{2}+(1-2 \alpha)\|x-y\|^{2} .
\end{aligned}
$$

A mapping satisfying the condition (C) is C - α nonexpansive mapping. An α-nonexpansive mapping is a C - α nonexpansive mapping and also generalized α-nonexpansive mapping is a $C-\alpha$ nonexpansive mapping, but from the examples given in [12] it can be seen that the reverse is not true.
The concept of approximating fixed points for generalized nonexpansive mappings plays an important role in the study of three-step iteration processes. Pant and Shukla [12] studied the Noor iteration scheme for $C-\alpha$ nonexpansive mapping. In 2000, Noor introduced the first three-step iteration scheme [8] and defined the following process: for arbitrary $x_{1} \in K$ construct a sequence $\left\{x_{n}\right\}$ defined by
$\left\{\begin{aligned} z_{n} & =\left(1-c_{n}\right) x_{n}+c_{n} T x_{n} \\ y_{n} & =\left(1-b_{n}\right) x_{n}+b_{n} T z_{n} \\ x_{n+1} & =\left(1-a_{n}\right) x_{n}+{ }_{n} T y_{n}, \forall n \in \mathbb{N}\end{aligned}\right.$
where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\} \in(0,1)$.
Inspired and motivated by these facts, we introduce the following iterative scheme for three C - α nonexpansive mappings in uniformly convex Banach spaces. Let K be a nonempty convex subset of a Banach space X and $T_{i}: K \rightarrow K, i=1,2,3$ be mappings. Then for arbitrary $x_{1} \in K$, the scheme is defined as follows:
$\left\{\begin{array}{c}z_{n}=\left(1-c_{n}\right) x_{n}+c_{n} T_{1} x_{n} \\ y_{n}=\left(1-b_{n}\right) z_{n}+b_{n} T_{2} z_{n} \\ x_{n+1}=\left(1-a_{n}\right) y_{n}+a_{n} T_{3} y_{n}, \forall n \in \mathbb{N},\end{array}\right\}$
where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ in $(0,1)$.
We then present the following three iteration schemes to approximate the fixed point for three mappings.
Let K be a nonempty convex subset of a Banach space X and $T_{i}: K \rightarrow K, i=1,2,3$, be mappings. Then for arbitrary $x_{1} \in K$, the scheme is defined as follows:
$\left\{\begin{array}{c}z_{n}=\left(1-c_{n}\right) x_{n}+c_{n} T_{i} x_{n} \\ y_{n}=\left(1-b_{n}\right) z_{n}+b_{n} T_{i} z_{n} \\ x_{n+1}=\left(1-a_{n}\right) y_{n}+a_{n} T_{i} y_{n}, \forall n \in \mathbb{N},\end{array}\right\}$
where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ in $(0,1)$.
In this paper let say the iterations: (1.2) for $i=1,(1.3)$ for $i=2$, and (1.4) for $i=3$, respectively. The aim of this paper is to introduce and study convergence problem of three-step iterative sequence (1.1) for three C - α nonexpansive mappings in uniformly convex Banach spaces. The results presented in this paper generalize and extend some recent [12].
The following definitions will be needed in proving our main results.
A Banach space X is said to be uniformly convex if the modulus of convexity of X
$\delta(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\}>0$,
for all $0<\varepsilon \leq 2$ (i.e., $\delta(\varepsilon)$ is a function $(0,2] \rightarrow(0,1))$.
Recall that a Banach space X is said to satisfy Opial's condition [9] if, for each sequence $\left\{x_{n}\right\}$ in X, the condition $x_{n} \rightarrow x$ weakly as $n \rightarrow \infty$ and for all $y \in X$ with $y \neq x$ imply that
$\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|$.
Let $\left\{x_{n}\right\}$ be a bounded sequence in a Banach space X. For $x \in X$, we set
$r\left(x,\left\{x_{n}\right\}\right)=\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|$.
The asymptotic radius of $\left\{x_{n}\right\}$ relative to K is defined by
$r\left(K,\left\{x_{n}\right\}\right)=\inf \left\{r\left(x,\left\{x_{n}\right\}\right): x \in K\right\}$.
The asymptotic center of $\left\{x_{n}\right\}$ relative to K is the set
$A\left(K,\left\{x_{n}\right\}\right)=\left\{x \in K: r\left(x,\left\{x_{n}\right\}\right)=r\left(K,\left\{x_{n}\right\}\right)\right\}$.
It is known that, in uniformly convex Banach space, $A\left(K,\left\{x_{n}\right\}\right)$ consists of exactly one-point.
Lemma 1.1. [21]. Let $r>0$ be a fixed real number. Then a Banach space X is uniformly convex if and only if there is a continuous strictly increasing convex function $g:[0, \infty) \longrightarrow[0, \infty)$ with $g(0)=0$ such that
$\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) g(\|x-y\|)$
for all $x, y \in B_{r}:=\{x \in X:\|x\| \leq r\}$ and $\lambda \in[0,1]$.

We now list some properties of mapping that satisfy $C-\alpha$ nonexpansive mapping. In what follows, we shall make use of the following lemmas.

Lemma 1.2. Let K be a nonempty closed and convex subset of Banach space X. Let $T: K \rightarrow K$ be a C - α nonexpansive mapping for some $\alpha \in[0,1)$ such that $F(T) \neq \emptyset$. Then T is a quasi-nonexpansive.
Proof. Let $x \in K$ and $p \in F(T)$. Then we have $\frac{1}{2}\|p-T p\|=0 \leq\|p-x\|$ implies that

$$
\begin{aligned}
\|T x-p\|^{2} & =\|T x-T p\|^{2} \\
& \leq \alpha\|T x-p\|^{2}+\alpha\|x-T p\|^{2}+(1-2 \alpha)\|x-p\|^{2} \\
& \leq \alpha\|T x-p\|^{2}+\alpha\|x-p\|^{2}+(1-2 \alpha)\|x-p\|^{2} \\
& \leq \alpha\|T x-p\|^{2}+(1-\alpha)\|x-p\|^{2} .
\end{aligned}
$$

So, we have $\|T x-p\|^{2} \leq \&\|x-p\|^{2}$.
Lemma 1.3. [12]. Suppose that K is a nonempty subset a Banach space X and $T: K \rightarrow K$ is a C - α nonexpansive mapping. Then $F(T)$ is closed. In addition, if K is convex and X is strictly convex, then $F(T)$ is convex.

Proposition 1.4. [12]. (Demiclosedness principle). Assume that K is a nonempty subset of a Banach space X which has the Opial property and $T: K \rightarrow K$ is a C - α nonexpansive mapping. If $\left\{x_{n}\right\}$ converges weakly to a point p and $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0$, then $T p=p$. That is, $I-T$ is demiclosed at zero, where I is the identity mapping on X.

2. Main results

In this section, we prove the three-step iterative scheme (1.1) to converge to a common fixed point for three C - α nonexpansive mappings in uniformly convex Banach space.
Lemma 2.1. Let K be a nonempty bounded, closed, convex subset of a uniformly convex Banach space X. $T_{i}: K \rightarrow K, i=1,2,3$, be three C - α nonexpansive mappings for $\alpha \in[0,1)$ with $F \neq \emptyset$. For arbitrary chosen $x_{0} \in K,\left\{x_{n}\right\}$ be a sequence generated by (1.1), then we have, for common fixed point p of $T_{i}, i=1,2,3, \lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists.

Proof. From Lemma 1.2, for any $p \in F, x \in K$ and $T_{i}: K \rightarrow K, i=1,2,3$, are $C-\alpha$ nonexpansive mappings, then we have for each $i=1,2,3$, $\frac{1}{2}\left\|p-T_{i} p\right\|=0 \leq\|p-x\|$ implies that

$$
\begin{align*}
\left\|T_{i} x-p\right\|^{2} & =\left\|T_{i} x-T_{i} p\right\|^{2} \\
& \leq \alpha\left\|T_{i} x-p\right\|^{2}+\alpha\left\|x-T_{i} p\right\|^{2}+(1-2 \alpha)\|x-p\|^{2} \tag{2.1}\\
& \leq \alpha\left\|T_{i} x-p\right\|^{2}+\alpha\|x-p\|^{2}+(1-2 \alpha)\|x-p\|^{2} \\
& \leq \alpha\left\|T_{i} x-p\right\|^{2}+(1-\alpha)\|x-p\|^{2} .
\end{align*}
$$

So, for each $i=1,2,3,\left\|T_{i} x-p\right\|^{2} \leq \&\|x-p\|^{2}$. Thus for each $i=1,2,3, T_{i} C-\alpha$ nonexpansive mappings are quasi-nonexpansive.
Now, using (1.1) and (2.1), we have,

$$
\begin{align*}
\left\|z_{n}-p\right\| & =\left\|\left(1-c_{n}\right) x_{n}+c_{n} T_{1} x_{n}-p\right\| \tag{2.2}\\
& =\left\|\left(1-c_{n}\right)\left(x_{n}-p\right)+c_{n}\left(T_{1} x_{n}-p\right)\right\| \\
& \leq\left(1-c_{n}\right)\left\|x_{n}-p\right\|+c_{n}\left\|T_{1} x_{n}-p\right\| \\
& \leq\left(1-c_{n}\right)\left\|x_{n}-p\right\|+c_{n}\left\|x_{n}-p\right\|=\left\|x_{n}-p\right\| .
\end{align*}
$$

Using (1.1), (2.1) and (2.2), we get

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|\left(1-b_{n}\right) z_{n}+b_{n} T_{2} z_{n}-p\right\| \tag{2.3}\\
& =\left\|\left(1-b_{n}\right)\left(z_{n}-p\right)+b_{n}\left(T_{2} z_{n}-p\right)\right\| \\
& \leq\left(1-b_{n}\right)\left\|z_{n}-p\right\|+b_{n}\left\|T_{2} z_{n}-p\right\| \\
& \leq\left(1-b_{n}\right)\left\|z_{n}-p\right\|+b_{n}\left\|z_{n}-p\right\|=\left\|z_{n}-p\right\| \leq\left\|x_{n}-p\right\| .
\end{align*}
$$

By using (1.1), (2.1), (2.2) and (2.3), we get

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\left(1-a_{n}\right) y_{n}+a_{n} T_{3} y_{n}-p\right\| \\
& =\left\|\left(1-a_{n}\right)\left(y_{n}-p\right)+a_{n}\left(T_{3} y_{n}-p\right)\right\| \\
& \leq\left(1-a_{n}\right)\left\|y_{n}-p\right\|+a_{n}\left\|T_{3} y_{n}-p\right\| \\
& \leq\left(1-a_{n}\right)\left\|y_{n}-p\right\|+a_{n}\left\|y_{n}-p\right\| \\
& =\left\|y_{n}-p\right\| \leq\left\|x_{n}-p\right\| .
\end{aligned}
$$

Thus we have
$\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\|$.
This implies that $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded and non-increasing for each p common fixed point of $T_{i}, i=1,2,3$. It follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists.

Theorem 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space $X . T_{i}: K \rightarrow K, i=1,2,3$, be C - α nonexpansive mappings for $\alpha \in[0,1)$, common fixed point p of $T_{i}, i=1,2,3$, and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be real sequences in $(0,1)$. Let $\left\{x_{n}\right\}$ be a sequence in K defined by (1.1), and parameters satisfy one of the following conditions:
(1) If $\limsup a_{n \rightarrow \infty}<1$ and $\liminf _{n \rightarrow \infty} a_{n}\left(1-a_{n}\right)>0$,
(2) If $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty} b_{n}<1$ and $\liminf _{n \rightarrow \infty} b_{n}\left(1-b_{n}\right)>0$,
(3) If $\limsup _{n \rightarrow \infty} c_{n}<1$ and $\liminf _{n \rightarrow \infty} c_{n}\left(1-c_{n}\right)>0$.

Then $F \neq \emptyset$ if and only if $\left\{x_{n}\right\}$ is bounded and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} z_{n}-z_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{3} y_{n}-y_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty} \| z_{n}-$ $y_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| y_{n}-x_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| T_{2} x_{n}-x_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| T_{3} x_{n}-x_{n} \|=0$.
Proof. By Lemma 2.1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exits for any $p \in F$. Then the sequence $\left\{x_{n}\right\}$ is bounded. $T_{i}: K \rightarrow K, i=1,2,3$, are C - α nonexpansive mappings and $T_{i}: K \rightarrow K, i=1,2,3$, has a common fixed point p. From (2.1) and Lemma 2.1 , we see that $M_{1}=\sup \left\{\left\|x_{n}\right\|,\left\|z_{n}\right\|,\left\|y_{n}\right\|,\left\|T_{1} x_{n}\right\|,\left\|T_{2} z_{n}\right\|,\left\|T_{3} y_{n}\right\|: n \in \mathbb{N}\right\}<\infty$. Also from (1.1), (2.1) and Lemma 1.1, we have

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2} & \left.=\|\left(1-c_{n}\right) x_{n}+c_{n} T_{1} x_{n}-p\right) \|^{2} \\
& =\left\|\left(1-c_{n}\right)\left(x_{n}-p\right)+c_{n}\left(T_{1} x_{n}-p\right)\right\|^{2} \\
& \leq\left(1-c_{n}\right)\left\|x_{n}-p\right\|^{2}+c_{n}\left\|T_{1} x_{n}-p\right\|^{2}-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right) \\
& \leq\left(1-c_{n}\right)\left\|x_{n}-p\right\|^{2}+c_{n}\left\|x_{n}-p\right\|^{2}-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right) \\
& =\left\|x_{n}-p\right\|^{2}-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right)
\end{aligned}
$$

Thus we have
$\left\|z_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right)$.
Now by (1.1), (2.1), (2.4) and Lemma 1.1, we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =\left\|\left(1-b_{n}\right) z_{n}+b_{n} T_{2} z_{n}-p\right\|^{2} \\
& =\left\|\left(1-b_{n}\right)\left(z_{n}-p\right)+b_{n}\left(T_{2} z_{n}-p\right)\right\|^{2} \\
& \leq\left(1-b_{n}\right)\left\|z_{n}-p\right\|^{2}+b_{n}\left\|z_{n}-p\right\|^{2}-b_{n}\left(1-b_{n}\right)\left(g\left(\left\|z_{n}-T_{2} z_{n}\right\|\right)\right) \\
& \leq\left\|x_{n}-p\right\|^{2}-b_{n}\left(1-b_{n}\right)\left(g\left(\left\|z_{n}-T_{2} z_{n}\right\|\right)\right)-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right)
\end{aligned}
$$

So we have

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-b_{n}\left(1-b_{n}\right)\left(g\left(\left\|T_{2} z_{n}-T_{2} x_{n}\right\|\right)\right) \tag{2.5}\\
& -c_{n}\left(1-c_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right)
\end{align*}
$$

Moreover, by (1.1), (2.1), (2.5) and Lemma 1.1, we have

$$
\begin{aligned}
&\left\|x_{n+1}-p\right\|^{2}=\left\|\left(1-a_{n}\right) y_{n}+a_{n} T_{3} y_{n}-p\right\|^{2} \leq\left(1-a_{n}\right)\left\|y_{n}-p\right\|^{2}+a_{n}\left\|T_{3} y_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)\right) \\
& \leq\left(1-a_{n}\right)\left\|y_{n}-p\right\|^{2}+a_{n}\left\|y_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)\right) \\
& \leq\left\|y_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)\right)-b_{n}\left(1-b_{n}\right)\left(g\left(\left\|z_{n}-T_{2} z_{n}\right\|\right)\right) \\
&-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right) \\
& \leq\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)\right)-b_{n}\left(1-b_{n}\right)\left(g\left(\left\|z_{n}-T_{2} z_{n}\right\|\right)\right)-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right)
\end{aligned}
$$

Thus we have

$$
\begin{gathered}
\left\|x_{n+1}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)\right)-b_{n}\left(1-b_{n}\right)\left(g\left(\left\|z_{n}-T_{2} z_{n}\right\|\right)\right) \\
-c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right)
\end{gathered}
$$

From the last inequality, we have

$$
\begin{align*}
& a_{n}\left(1-a_{n}\right)\left(g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)\right) \leq\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \tag{2.6}\\
& b_{n}\left(1-b_{n}\right)\left(g\left(\left\|z_{n}-T_{2} z_{n}\right\|\right)\right) \leq\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
c_{n}\left(1-c_{n}\right)\left(g\left(\left\|x_{n}-T_{1} x_{n}\right\|\right)\right) \leq\left(\left\|x_{n}-q\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) . \tag{2.8}
\end{equation*}
$$

By condition $\limsup _{n \rightarrow \infty} a_{n}<1$ and $\liminf _{n \rightarrow \infty} a_{n}\left(1-a_{n}\right)>0$, then we have
$\lim _{n \rightarrow \infty} g\left(\left\|y_{n}-T_{3} y_{n}\right\|\right)=0$.
From g is continuous strictly increasing with $g(0)=0$ then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-T_{3} y_{n}\right\|=0 \tag{2.9}
\end{equation*}
$$

By using a similar method for inequalities (2.7) and (2.8) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-T_{2} z_{n}\right\|=0 . \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0 \tag{2.11}
\end{equation*}
$$

Next, from (1.1) and (2.11), we have

$$
\begin{align*}
\left\|z_{n}-x_{n}\right\| & \leq\left\|\left(1-c_{n}\right) x_{n}+c_{n} T_{1} x_{n}-x_{n}\right\| \tag{2.1.}\\
& \leq\left(c_{n}\right)\left\|T_{1} x_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{align*}
$$

Also, from (1.1) and (2.10), we have

$$
\begin{align*}
\left\|y_{n}-z_{n}\right\| & \leq\left\|\left(1-b_{n}\right) z_{n}+b_{n} T_{2} z_{n}-z_{n}\right\| \tag{2.18}\\
& \leq\left(b_{n}\right)\left\|T_{2} z_{n}-z_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{align*}
$$

By (2.10) and (2.12) we have

$$
\begin{equation*}
\left\|T_{2} z_{n}-x_{n}\right\| \leq\left\|T_{2} z_{n}-z_{n}\right\|+\left\|z_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.14}
\end{equation*}
$$

Moreover from (2.12) and (2.13)

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-z_{n}\right\|+\left\|z_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.15}
\end{equation*}
$$

By (2.9) and (2.15) we have

$$
\begin{equation*}
\left\|T_{3} y_{n}-x_{n}\right\| \leq\left\|T_{3} y_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.16}
\end{equation*}
$$

Next

$$
\begin{aligned}
\left\|T_{2} x_{n}-z_{n}\right\|^{2} & \leq\left(\left\|T_{2} x_{n}-T_{2} z_{n}\right\|+\left\|T_{2} z_{n}-z_{n}\right\|\right)^{2} \\
& =\left\|T_{2} x_{n}-T_{2} z_{n}\right\|^{2}+\left\|T_{2} z_{n}-z_{n}\right\|^{2}+2\left(\left\|T_{2} x_{n}-T_{2} z_{n}\right\|\left\|T_{2} z_{n}-z_{n}\right\|\right) \\
& \leq \alpha\left\|T_{2} x_{n}-z_{n}\right\|^{2}+\alpha\left\|T_{2} z_{n}-x_{n}\right\|^{2}+(1-2 \alpha)\left\|x_{n}-z_{n}\right\|^{2}+4 M_{1}\left\|T_{2} z_{n}-z_{n}\right\|+\left\|T_{2} z_{n}-z_{n}\right\|^{2} .
\end{aligned}
$$

Then from (2.10), (2.12) and (2.14), we obtain

$$
\begin{equation*}
\left\|T_{2} x_{n}-z_{n}\right\|^{2} \leq \frac{\alpha}{1-\alpha}\left\|T_{2} z_{n}-x_{n}\right\|^{2}+\frac{(1-2 \alpha)}{(1-\alpha)}\left\|x_{n}-z_{n}\right\|^{2}+\frac{4 M_{1}}{(1-\alpha)}\left\|T_{2} z_{n}-z_{n}\right\|+\frac{1}{(1-\alpha)}\left\|T_{2} z_{n}-z_{n}\right\|^{2} \tag{2.17}
\end{equation*}
$$

Thus from (2.12) and (2.17) we obtain

$$
\begin{equation*}
\left\|T_{2} x_{n}-x_{n}\right\| \leq\left\|T_{2} x_{n}-z_{n}\right\|+\left\|z_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.18}
\end{equation*}
$$

Next

$$
\begin{aligned}
\left\|T_{3} x_{n}-y_{n}\right\|^{2} & \leq\left(\left\|T_{3} x_{n}-T_{3} y_{n}\right\|+\left\|T_{3} y_{n}-y_{n}\right\|\right)^{2} \\
& =\left\|T_{3} x_{n}-T_{2} y_{n}\right\|^{2}+\left\|T_{3} y_{n}-y_{n}\right\|^{2}+2\left(\left\|T_{3} x_{n}-T_{3} y_{n}\right\|\left\|T_{3} y_{n}-y_{n}\right\|\right) \\
& \leq \alpha\left\|T_{3} x_{n}-y_{n}\right\|^{2}+\alpha\left\|T_{3} y_{n}-x_{n}\right\|^{2}+(1-2 \alpha)\left\|x_{n}-y_{n}\right\|^{2}+4 M_{1}\left\|T_{3} y_{n}-y_{n}\right\|+\left\|T_{3} y_{n}-y_{n}\right\|^{2} .
\end{aligned}
$$

Then from (2.9),(2.15) and (2.16) we obtain

$$
\left\|T_{3} x_{n}-y_{n}\right\|^{2} \leq \frac{\alpha}{1-\alpha}\left\|T_{3} y_{n}-x_{n}\right\|^{2}+\frac{(1-2 \alpha)}{(1-\alpha)}\left\|x_{n}-y_{n}\right\|^{2}+\frac{4 M_{1}}{(1-\alpha)}\left\|T_{3} y_{n}-y_{n}\right\|+\frac{1}{(1-\alpha)}\left\|T_{3} y_{n}-y_{n}\right\|^{2} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus from (2.15) and (2.19) we obtain

$$
\begin{equation*}
\left\|T_{3} x_{n}-x_{n}\right\| \leq\left\|T_{3} x_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.19}
\end{equation*}
$$

Thus from (2.11), (2.18) and (2.19) we obtain
$\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0$.
Conversely, assume that $\left\{x_{n}\right\}$ is bounded and $\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0$. For each $i=1,2,3$, there are bounded subsequences $\left\{T_{i} x_{n_{k}}\right\}$ of $\left\{T_{i} x_{n}\right\}$ such that $\lim _{k \rightarrow \infty}\left\|T_{i} x_{n_{k}}-x_{n_{k}}^{n \rightarrow \infty}\right\|=0$. Suppose $p \in A\left(K,\left\{x_{n_{k}}\right\}\right)$. Let $M_{2}=\sup \left\{\left\|x_{n_{k}}\right\|,\left\|T_{i} x_{n_{k}}\right\|,\left\|T_{i} p\right\|,\|p\|\right.$: $k \in \mathbb{N}, i=1,2,3\}<\infty$. For $\alpha \in[0,1)$ and $i=1$, by Lemma 1.2, we obtain

$$
\begin{aligned}
\left\|x_{n_{k}}-T_{1} p\right\|^{2} & \leq\left(\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+\left\|T_{1} x_{n_{k}}-T_{1} p\right\|\right)^{2} \\
& =\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|^{2}+\left\|T_{1} x_{n_{k}}-T_{1} p\right\|^{2}+2\left(\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|\left\|T_{1} x_{n_{k}}-T_{1} p\right\|\right) \\
\leq & \alpha\left\|T_{1} x_{n_{k}}-p\right\|^{2}+\alpha\left\|x_{n_{k}}-T_{1} p\right\|^{2}+(1-2 \alpha)\left\|x_{n_{k}}-p\right\|^{2}+2\left(\left\|T_{1} x_{n_{k}}-T_{1} p\right\|\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|\right)+\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|^{2} . \\
& \begin{aligned}
(1-\alpha)\left\|x_{n_{k}}-T_{1} p\right\|^{2} & \leq(1+\alpha)\left\|T_{1} x_{n_{k}}-p\right\|^{2}+2\left(\alpha\left\|x_{n_{k}}-p\right\|\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|\right)+ \\
& +2\left(\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|\left\|x_{n_{k}}-T_{1} p\right\|\right)\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+(1-\alpha)\left\|x_{n_{k}}-p\right\|^{2} .
\end{aligned}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\left\|x_{n_{k}}-T_{1} p\right\|^{2} \leq \frac{(1+\alpha)}{(1-\alpha)}\left\|T_{1} x_{n_{k}}-p\right\|^{2}+\frac{2}{(1-\alpha)}\left(\alpha\left\|x_{n_{k}}-p\right\|+\left\|x_{n_{k}}-T_{1} p\right\|\right)\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+\left\|x_{n_{k}}-p\right\|^{2} \tag{2.20}
\end{equation*}
$$

Therefore

$$
\left\|x_{n_{k}}-T_{1} p\right\|^{2} \leq \frac{(1+\alpha)}{(1-\alpha)}\left\|T_{1} x_{n_{k}}-p\right\|^{2}+\frac{4 M_{2}(1+\alpha)}{(1-\alpha)}\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+\left\|x_{n_{k}}-p\right\|^{2}
$$

Take the both side limsup, then we have

$$
\underset{k \rightarrow \infty}{\limsup }\left\|x_{n_{k}}-T_{1} p\right\|^{2} \leq \frac{(1+\alpha)}{(1-\alpha)} \limsup _{k \rightarrow \infty}\left\|T_{1} x_{n_{k}}-p\right\|^{2}+\frac{4 M_{2}(1+\alpha)}{(1-\alpha)} \limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+\limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-p\right\|^{2}
$$

Thus we have for $T_{1}: K \rightarrow K, i=1$

$$
r\left(T_{1} p,\left\{x_{n_{k}}\right\}\right)=\limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-T_{1} p\right\| \leq \limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-p\right\|=r\left(p,\left\{x_{n_{k}}\right\}\right) .
$$

This implies that for $i=2,3$, we also obtain

$$
r\left(T_{2} p,\left\{x_{n_{k}}\right\}\right)=\limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-T_{2} p\right\| \leq \limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-p\right\|=r\left(p,\left\{x_{n_{k}}\right\}\right)
$$

and

$$
r\left(T_{3} p,\left\{x_{n_{k}}\right\}\right)=\limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-T_{3} p\right\| \leq \limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-p\right\|=r\left(p,\left\{x_{n_{k}}\right\}\right) .
$$

These mean that for each $i=1,2,3, T_{i} p \in A\left(K,\left\{x_{n_{k}}\right\}\right)$. Since X is uniformly Banach space, $A\left(K,\left\{x_{n}\right\}\right)$ is singleton, hence for each $i=1,2,3$, $T_{i} p=p$. This completes the proof.

In the next result, we prove the weak convergence of the iterative scheme (1.1) for three C - α nonexpansive mappings with $\alpha \in[0,1$) in a uniformly convex Banach space satisfying Opial's condition.

Theorem 2.3. Let X be a uniformly convex Banach space satisfying Opial's condition and K be a nonempty closed convex subset of X. Let $T_{i}: K \rightarrow K, i=1,2,3$, be three C - α nonexpansive mappings for $\alpha \in[0,1)$. Assume that $p \in F$ is a common fixed point of $T_{i}, i=1,2,3$. Let $\left\{x_{n}\right\}$ be a sequence in K defined by (1.1) where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are real sequences in $(0,1)$ and satisfy the conditions of Theorem 2.1. Then $\left\{x_{n}\right\}$ converges weakly to a common fixed point of $p T_{i}, i=1,2,3$.

Proof. Since $F \neq \emptyset$, it follows from Lemma 2.1 that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Now, we show that $\left\{x_{n}\right\}$ has a unique weak subsequential limit in F. We assume that ω_{1} and ω_{2} are weak limits of the subsequences $\left\{x_{n_{k}}\right\}$ and $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, respectively. From Theorem 2.1, we have $\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0$. Moreover by Proposition 1.1, $I-T_{i}$ for $i=1,2,3$ are demiclosed at zero. This implies that $\left(I-T_{i}\right) \omega_{1}=0, i=1,2,3$, that is $T_{i} \omega_{1}=\omega_{1}, i=1,2,3$. Similarly $T_{i} \omega_{2}=\omega_{2}, i=1,2,3$. Now, we show the uniqueness. If $\omega_{1} \neq \omega_{2}$, then by the Opial's condition, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x_{n}-\omega_{1}\right\| & =\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-\omega_{1}\right\|<\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-\omega_{2}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-\omega_{2}\right\| \\
& =\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-\omega_{2}\right\|<\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-\omega_{1}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-\omega_{1}\right\|
\end{aligned}
$$

This is a contradiction. So, $\omega_{1}=\omega_{2}$. Therefore $\left\{x_{n}\right\}$ converges weakly to a common fixed point of $T_{i}, i=1,2,3$. This completes the proof.

Finally, we prove our strong convergence theorem as follows.
Theorem 2.4. Let X be a real uniformly convex Banach space, K be a nonempty compact convex subset of X and for $\alpha \in[0,1), T_{i}: K \rightarrow$ $K, i=1,2,3$, be three C - α nonexpansive mappings with $F \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in K defined by (1.1) where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ in $(0,1)$ for all $n \in \mathbb{N}$, and satisfy the conditions of Theorem 2.1. Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $T_{i}, i=1,2,3$.
Proof. By Theorem 2.1, we have $\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0$. Since K is compact, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \longrightarrow p$ as $k \rightarrow \infty$. Let $M_{3}=\sup \left\{\left\|x_{n_{k}}\right\|,\left\|T_{i} x_{n_{k}}\right\|,\left\|T_{i} p\right\|,\|p\|: k \in \mathbb{N}, i=1,2,3\right\}<\infty$. Then from (2.20), choose $i=1$, by Lemma 1.2, we obtain for $\alpha \in[0,1)$

$$
\left\|x_{n_{k}}-T_{1} p\right\|^{2} \leq \frac{(1+\alpha)}{(1-\alpha)}\left\|T_{1} x_{n_{k}}-p\right\|^{2}+\frac{4 M_{3}(1+\alpha)}{(1-\alpha)}\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+\left\|x_{n_{k}}-p\right\|^{2}
$$

Letting $k \rightarrow \infty$, we get $T_{1} p=p$. By using a similar method, $p=T_{2} p$ and then we have $p=T_{3} p$. Thus we have $\left\{x_{n_{k}}\right\}$ converges to common fixed point p of $T_{i}, i=1,2,3$. Since by Lemma 2.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for every $p \in F$, so $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $T_{i}, i=1,2,3$.

3. Examples

Now we give the examples of $T_{i}: K \rightarrow K, i=1,2,3$, be three C - α nonexpansive mappings with $\alpha \in[0,1)$ which are not generalized α-nonexpansive mappings.

Example 3.1. Let $K=[0,5] \subset \mathbb{R}$ endowed with usual norm in \mathbb{R}. Define a mapping $T_{1}: K \rightarrow K$ by

$$
T_{1} x=\left\{\begin{array}{cc}
\frac{x}{4}, & x \neq 5 \\
\frac{13}{4}, & x=5
\end{array}\right.
$$

To verify that for $\alpha=\frac{3}{4}, T_{1}$ is a $C-\frac{3}{4}$ nonexpansive mapping, we consider the following cases:
Case I:If $x, y \neq 5$, then

$$
\begin{aligned}
\alpha\left|T_{1} x-y\right|^{2}+\alpha\left|T_{1} y-x\right|^{2}+(1-2 \alpha)|x-y|^{2} & =\frac{3}{4}\left|T_{1} x-y\right|^{2}+\frac{3}{4}\left|T_{1} y-x\right|^{2}-\frac{1}{2}|x-y|^{2} \\
& =\frac{3}{4}\left(\frac{1}{4} x-y\right)^{2}+\frac{3}{4}\left(\frac{1}{4} y-x\right)^{2}-\frac{1}{2}(x-y)^{2} \\
& =\frac{3}{4}\left(\frac{1}{16} x^{2}-\frac{1}{2} x y+y^{2}\right)+\frac{3}{4}\left(\frac{1}{16} y^{2}-\frac{1}{2} x y+x^{2}\right)-\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2} \\
& =\frac{3}{64} x^{2}-\frac{3}{8} x y+\frac{3}{4} y^{2}+\frac{3}{64} y^{2}-\frac{3}{8} x y+\frac{3}{4} x^{2}-\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2} \\
& =\left(\frac{1}{4} x-\frac{1}{4} y\right)^{2}+\frac{15}{64} x^{2}+\frac{15}{64} y^{2}+\frac{3}{8} x y \geq\left|\frac{1}{4} x-\frac{1}{4} y\right|^{2}=\left|T_{1} x-T_{1} y\right|^{2} .
\end{aligned}
$$

Case II:If $x=5, y \neq 5$, then

$$
\begin{aligned}
\alpha\left|T_{1} x-y\right|^{2}+\alpha\left|T_{1} y-x\right|^{2}+(1-2 \alpha)|x-y|^{2} & =\frac{3}{4}\left|T_{1} x-y\right|^{2}+\frac{3}{4}\left|T_{1} y-x\right|^{2}-\frac{1}{2}|x-y|^{2} \\
& =\frac{3}{4}\left(\frac{13}{4}-y\right)^{2}+\frac{3}{4}\left(\frac{1}{4} y-5\right)^{2}-\frac{1}{2}(5-y)^{2} \\
& =\frac{3}{4}\left(\frac{169}{16}-\frac{13}{2} y+y^{2}\right)+\frac{3}{4}\left(\frac{1}{16} y^{2}-\frac{5}{2} y+25\right)-\frac{25}{2}+5 y-\frac{1}{2} y^{2} \\
& =\left(\frac{13}{4}-\frac{1}{4} y\right)^{2}+\frac{15}{64} y^{2}-\frac{1}{8} y+\frac{231}{64} \geq\left|\frac{13}{4}-\frac{1}{4} y\right|^{2}=\left|T_{1} x-T_{1} y\right|^{2} .
\end{aligned}
$$

Since for $y \in[0,5), \frac{15}{64} y^{2}-\frac{1}{8} y+\frac{231}{64} \geq 0$, then T_{1} is a $C-\frac{3}{4}$ nonexpansive mapping.
Contrarily at $x=3, y=5$; we get

$$
\frac{1}{2}\left|x-T_{1} x\right|=\frac{1}{2}\left|3-\frac{3}{4}\right|=\frac{9}{8} \leq 2=|x-y| .
$$

Then, we have

$$
\begin{aligned}
\alpha\left|T_{1} x-y\right|+\alpha\left|T_{1} y-x\right|+(1-2 \alpha)|x-y| & =\alpha\left|\frac{3}{4}-5\right|+\alpha\left|\frac{13}{4}-3\right|+(1-2 \alpha)|3-5|=2+\frac{1}{2} \alpha \\
& <\left|\frac{3}{4}-\frac{13}{4}\right|=\frac{10}{4}=2+\frac{1}{2}=\left|T_{1} x-T_{1} y\right|
\end{aligned}
$$

Hence T_{1} is not a generalized $\frac{3}{4}$-nonexpansive mapping.
Example 3.2. Let $K=[0,5] \subset \mathbb{R}$ endowed with usual norm in \mathbb{R}. Define a mapping $T_{2}: K \rightarrow K$ by

$$
T_{2} x=\left\{\begin{array}{cc}
\frac{x}{3}, & x \neq 5 \\
\frac{11}{3}, & x=5
\end{array}\right.
$$

To verify that for $\alpha=\frac{3}{4}, T_{2}$ is a $C-\frac{3}{4}$ nonexpansive mapping, we consider the following cases:
Case I:If $x, y \neq 5$, then

$$
\begin{aligned}
\alpha\left|T_{2} x-y\right|^{2}+\alpha\left|T_{2} y-x\right|^{2}+(1-2 \alpha)|x-y|^{2} & =\frac{3}{4}\left|T_{2} x-y\right|^{2}+\frac{3}{4}\left|T_{2} y-x\right|^{2}-\frac{1}{2}|x-y|^{2} \\
& =\frac{3}{4}\left(\frac{1}{3} x-y\right)^{2}+\frac{3}{4}\left(\frac{1}{3} y-x\right)^{2}-\frac{1}{2}(x-y)^{2} \\
& =\frac{3}{4}\left(\frac{1}{9} x^{2}-\frac{2}{3} x y+y^{2}\right)+\frac{3}{4}\left(\frac{1}{9} y^{2}-\frac{2}{3} x y+x^{2}\right)-\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2} \\
& =\frac{3}{36} x^{2}-\frac{1}{2} x y+\frac{3 y^{2}}{4}+\frac{3 y^{2}}{36}-\frac{1}{2} x y+\frac{3 x^{2}}{4}-\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2} \\
& =x^{2}\left(\frac{1}{12}+\frac{3}{4}-\frac{1}{2}\right)+y^{2}\left(\frac{1}{12}+\frac{3}{4}-\frac{1}{2}\right)=\frac{1}{3} x^{2}+\frac{1}{3} y^{2} \\
& =\left(\frac{1}{3} x-\frac{1}{3} y\right)^{2}+\frac{2}{9}\left(x^{2}+y^{2}+x y\right) \geq\left|\frac{1}{3} x-\frac{1}{3} y\right|^{2}=\left|T_{2} x-T_{2} y\right|^{2}
\end{aligned}
$$

Case II:If $x=5, y \neq 5$, then

$$
\begin{aligned}
\alpha\left|T_{2} x-y\right|^{2}+\alpha\left|T_{2} y-x\right|^{2}+(1-2 \alpha)|x-y|^{2} & =\frac{3}{4}\left|T_{2} x-y\right|^{2}+\frac{3}{4}\left|T_{2} y-x\right|^{2}-\frac{1}{2}|x-y|^{2} \\
& =\frac{3}{4}\left(\frac{11}{3}-y\right)^{2}+\frac{3}{4}\left(\frac{1}{3} y-5\right)^{2}-\frac{1}{2}(5-y)^{2} \\
& =\frac{3}{4}\left(\frac{121}{9}-\frac{22}{3} y+y^{2}\right)+\frac{3}{4}\left(\frac{1}{9} y^{2}-\frac{10}{3} y+25\right)-\frac{25}{2}+5 y-\frac{1}{2} y^{2} \\
& =\left(\frac{11}{3}-\frac{1}{3} y\right)^{2}+\frac{2}{9} y^{2}-\frac{5}{9} y+\frac{26}{9} \geq\left|\frac{11}{3}-\frac{1}{3} y\right|^{2}=\left|T_{2} x-T_{2} y\right|^{2}
\end{aligned}
$$

Since $\frac{2}{9} y^{2}-\frac{5}{9} y+\frac{26}{9} \geq 0, T_{2}$ is a $C-\frac{3}{4}$ nonexpansive mapping.
Contrarily at $x=3, y=5$; we get
$\frac{1}{2}\left|x-T_{2} x\right|=\frac{1}{2}\left|3-\frac{3}{3}\right|=1 \leq 2=|x-y|$
Then, we have

$$
\begin{aligned}
\alpha\left|T_{2} x-y\right|+\alpha\left|T_{2} y-x\right|+(1-2 \alpha)|x-y| & =\alpha\left|\frac{3}{3}-5\right|+\alpha\left|\frac{11}{3}-3\right|+(1-2 \alpha)|3-5|=2+\frac{2}{3} \alpha \\
& <\left|\frac{3}{3}-\frac{11}{3}\right|=\frac{8}{3}=2+\frac{2}{3}=\left|T_{2} x-T_{2} y\right|
\end{aligned}
$$

Hence T_{2} is not a generalized $\frac{3}{4}$-nonexpansive mapping.
Example 3.3. Let $K=[0,5] \subset \mathbb{R}$ endowed with usual norm in \mathbb{R}. Define a mapping $T_{3}: K \rightarrow K$ by

$$
T_{3} x= \begin{cases}\frac{x}{2}, & x \neq 5 \\ \frac{7}{2}, & x=5\end{cases}
$$

To verify that for $\alpha=\frac{3}{4}, T_{3}$ is a $C-\frac{3}{4}$ nonexpansive mapping, we consider the following cases:
Case I:If $x, y \neq 5$, then

$$
\begin{aligned}
\alpha\left|T_{3} x-y\right|^{2}+\alpha\left|T_{3} y-x\right|^{2}+(1-2 \alpha)|x-y|^{2} & =\frac{3}{4}\left|T_{3} x-y\right|^{2}+\frac{3}{4}\left|T_{3} y-x\right|^{2}-\frac{1}{2}|x-y|^{2} \\
& =\frac{3}{4}\left(\frac{1}{2} x-y\right)^{2}+\frac{3}{4}\left(\frac{1}{2} y-x\right)^{2}-\frac{1}{2}(x-y)^{2} \\
& =\frac{3}{4}\left(\frac{1}{4} x^{2}-x y+y^{2}\right)+\frac{3}{4}\left(\frac{1}{4} y^{2}-x y+x^{2}\right)-\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2} \\
& =\frac{3}{16} x^{2}-\frac{3}{4} x y+\frac{3}{4} y^{2}+\frac{3}{16} y^{2}-\frac{3}{4} x y+\frac{3}{4} x^{2}-\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}\left(\frac{3}{16}+\frac{3}{4}-\frac{1}{2}\right)+y^{2}\left(\frac{3}{16}+\frac{3}{4}-\frac{1}{2}\right)-\frac{1}{2} x y=\frac{7}{16} x^{2}+\frac{7}{16} y^{2}-\frac{1}{2} x y \\
& =\left(\frac{1}{2} x-\frac{1}{2} y\right)^{2}+\frac{3}{16} x^{2}+\frac{3}{16} y^{2} \geq\left|\frac{1}{2} x-\frac{1}{2} y\right|^{2}=\left|T_{3} x-T_{3} y\right|^{2}
\end{aligned}
$$

Case II:If $x=5, y \neq 5$, then
$\alpha\left|T_{3} x-y\right|^{2}+\alpha\left|T_{3} y-x\right|^{2}+(1-2 \alpha)|x-y|^{2} \quad=\quad \frac{3}{4}\left|T_{3} x-y\right|^{2}+\frac{3}{4}\left|T_{3} y-x\right|^{2}-\frac{1}{2}|x-y|^{2}$

$$
=\frac{3}{4}\left(\frac{7}{2}-y\right)^{2}+\frac{3}{4}\left(\frac{1}{2} y-5\right)^{2}-\frac{1}{2}(5-y)^{2}
$$

$$
=\frac{3}{4}\left(\frac{49}{4}-7 y+y^{2}\right)+\frac{3}{4}\left(\frac{y^{2}}{4}-5 y+25\right)-\frac{25}{2}+5 y-\frac{1}{2} y^{2}
$$

$$
=y^{2}\left(\frac{3}{4}+\frac{3}{16}-\frac{1}{2}\right)+y\left(5-\frac{21}{4}-\frac{15}{4}\right)+\frac{147}{16}+\frac{75}{4}-\frac{25}{2}
$$

$$
=\frac{7}{16} y^{2}-4 y+\frac{247}{16}=\left(\frac{7}{2}-\frac{1}{2} y\right)^{2}+\frac{3}{16} y^{2}-\frac{1}{2} y+\frac{51}{16} \geq\left|\frac{7}{2}-\frac{1}{2} y\right|^{2}=\left|T_{3} x-T_{3} y\right|^{2}
$$

Since $\frac{3}{16} y^{2}-\frac{1}{2} y+\frac{51}{16} \geq 0$, then T_{3} is a $C-\frac{3}{4}$ nonexpansive mapping.
Contrarily at $x=5, y=3.4$; we get

$$
\frac{1}{2}\left|x-T_{3} x\right|=\frac{1}{2}\left|5-\frac{7}{2}\right|=\frac{3}{4}=0.75 \leq 1.6=|x-y|
$$

Then, we have

$$
\begin{aligned}
\alpha\left|T_{3} x-y\right|+\alpha\left|T_{3} y-x\right|+(1-2 \alpha)|x-y| & =\alpha\left|\frac{7}{2}-3.4\right|+\alpha\left|\frac{3.4}{2}-5\right|+(1-2 \alpha)|5-3.4|=1.6+(0.2) \alpha \\
& <\left|\frac{7}{2}-\frac{3.4}{2}\right|=1.8=\left|T_{3} x-T_{3} y\right|
\end{aligned}
$$

Hence T_{3} is not a generalized $\frac{3}{4}$-nonexpansive mapping.
Let $a_{n}=b_{n}=c_{n}=0.75$ for all $n \in \mathbb{N}$. We compute that the sequence $\left\{x_{n}\right\}$ generated by iterative schemes (1.1)-(1.4) converge to a fixed point 0 of $T_{i}, i=1,2,3$, which is shown by the Table 1 . Also we compute that the sequences $\left\{x_{n}\right\}$ generated by iterative schemes (1.1)-(1.4) converge to a common fixed point 0 of $T_{i}, i=1,2,3$, which is shown by Figure 1 .

Table 1: Sequences generated by (1.1)-iteration, (1.2)-iteration, (1.3)-iteration and (1.4)-iteration for $T_{i}, i=1,2,3$, mappings defined in Example 3.1, Example 3.2 and Example 3.3.

	(1.1)-iteration	(1.2)-iteration	(1.3)-iteration	(1.4)-iteration
x_{1}	5.0000000000	5.0000000000	5.0000000000	5.0000000000
x_{2}	1.1523437500	0.7058105469	1.0000000000	1.5136718750
x_{3}	0.1575469971	0.0591047406	0.1250000000	0.3695487976
x_{4}	0.0215396285	0.0049494448	0.0156250000	0.0902218744
x_{5}	0.0029448711	0.0004144677	0.0019531250	0.0220268248
x_{6}	0.0004026191	0.0000347076	0.0002441406	0.0053776428
x_{7}	0.0000550456	0.0000029064	0.0000305176	0.0013129011
x_{8}	0.0000075258	0.0000002434	0.0000038147	0.0003205325
x_{9}	0.0000010289	0.0000000204	0.0000004768	0.0000782550
x_{10}	0.0000001407	0.0000000017	0.0000000596	0.0000191052
x_{11}	0.0000000192	0.0000000001	0.0000000075	0.0000046644
x_{12}	0.0000000026	0.0000000000	0.0000000009	0.0000011388
x_{13}	0.0000000004	0.0000000000	0.0000000001	0.0000002780
x_{14}	0.0000000000	0.0000000000	0.0000000000	0.0000000679
x_{15}	0.0000000000	0.0000000000	0.0000000000	0.0000000166
x_{16}	0.0000000000	0.0000000000	0.0000000000	0.0000000040
x_{17}	0.0000000000	0.0000000000	0.0000000000	0.0000000010
x_{18}	0.0000000000	0.0000000000	0.0000000000	0.0000000002
x_{19}	0.0000000000	0.0000000000	0.0000000000	0.0000000000

Figure 3.1: Convergences of (1.1)-iteration, (1.2)-iteration, (1.3)-iteration and (1.4)-iteration to the common fixed point 0 of $T_{i}, i=1,2,3$, mappings defined in Example 3.1, Example 3.2, Example 3.3.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.
Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.
Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.
Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

References

[1] J.Ali, F. Ali, F. P.Kumar, Approximation of Fixed Points for Suzuki's Generalized Non-Expansive Mappings, Mathematics 7(6), 522 (2019), 1-11.
[2] D. Ariza-Ruiz, C. Hernandez Linares, E. Llorens-Fuster and E. Moreno-Galvez, On α-nonexpansive mappings in Banach spaces, Carpathian J. Math. 32 (2016), 13-28.
[3] K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Analy. 74 (13) (2011), 4378-4391.
[4] A. Ekinci and S. Temir, Convergence theorems for Suzuki generalized nonexpansive mapping in Banach spaces, Tamkang Journal of Mathematics 54 (1) (2023), 57-67.
[5] J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed Point Theory for A Class of Generalized Nonexpansive Mappings, Journal of Mathematical Analysis and Applications 375(1), (2011), 185-195.
[6] G. Maniu, On a three-step iteration process for Suzuki mappings with qualitative study, Numerical Functional Analysis and Optimization, 41:8 (2020), 929-949.
[7] E. Naraghirad, N.-C. Wong and J.-C. Yao, Approximating fixed points of α-nonexpansive mappings in uniformly convex Banach spaces and CAT (0) spaces, Fixed Point Theory and Applications 2013/1/57, (2013), 20 pages.
[8] M.A. Noor, New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251 (2000), 217-229.
[9] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Ame. Math.Soc. 73 (1967), 591-597.
[10] R. Pandey, R. Pant, W. Rakocevic, R. Shukla, Approximating Fixed Points of A General Class of Nonexpansive Mappings in Banach Spaces with Applications, Results in Mathematics, 74(7) (2019), 24 pages.
[11] R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38(2) (2017), 248-266.
[12] R. Pant and R. Shukla, Fixed point theorems for a new class of nonexpansive mappings, Appl. Gen. Topol. 23(2) (2022), 377-390.
[13] H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating fixed points of generalized ?-nonexpansive mappings in Banach spaces by new faster iteration process, Numerical Algorithms 81 (2019),1129-1148, DOI:10.1007/s11075-018-0588-x.
[14] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications, 340(2) (2008), 1088-1095.
[15] S. Temir, Weak and strong convergence theorems for three Suzuki's generalized nonexpansive mappings, Publications de l'Institut Mathematique 110 (124) (2021), 121-129.
[16] S. Temir and O. Korkut, Approximating fixed points of generalized α-nonexpansive mapping by the new iteration process, Journal of Mathematical Sciences and Modelling 5(1) (2022), 35-39.
[17] S. Temir and O. Korkut, Some Convergence Results Using A New Iteration Process for Generalized Nonexpansive Mappings in Banach Spaces, Asian-European Journal of Mathematics, 16(05) 2350077 (2023).
[18] S. Temir, Convergence theorems for a general class of nonexpansive mappings in Banach spaces, International Journal of Nonlinear Analysis and Applications (in press).
[19] B.S.Thakur, D.Thakur, M.Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Applied Mathematics and Computation, 275 (2016), 147-155.
[20] K.Ullah and M.Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat 32(1) (2018), 187-196.
[21] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis 16 (1991), 1127-1138.
[22] I. Yildirim, On fixed point results for mixed nonexpansive mappings, Mathematical Methods for Engineering Applications, ICMASE 2021, Salamanca, Spain, July 1-2, 2022/4/16.
[23] I. Yildirim, N. Karaca, Generalized (α, β)-nonexpansive multivalued mappings and their properties, 1st Int. Cong. Natural Sci., (2021), 672-679.

