Kinematics of Dual Quaternion Involution Matrices

Murat Bekar ${ }^{1, *}$, Yusuf Yaylı ${ }^{2}$
${ }^{1}$ Necmettin Erbakan University, Faculty of Science, Department of Mathematics-Computer Sciences, Konya, Turkey
*Corresponding author e-mail: mbekar@konya.edu.tr
${ }^{2}$ Ankara University, Faculty of Science, Department of Mathematics, Ankara, Turkey

Recevied: 06 January 2016, Accepted: 25 September 2016

Abstract

Rigid-body (screw) motions in three-dimensional Euclidean space \mathbb{R}^{3} can be represented by involution (resp. anti-involution) mappings obtained by dual-quaternions which are self-inverse and homomorphic (resp. anti-homomrphic) linear mappings. In this paper, we will represent four dual-quaternion matrices with their geometrical meanings; two of them correspond to involution mappings, while the other two correspond to anti-involution mappings.

Key words: Real-quaternion, dual-quaternion, (anti)-involution, rigid-body (screw) motion.
Mathematics Subject Classifications (2010): 11R52, 53A25, 53A35, 70B10.

Dual Kuaterniyon İnvolüsyon Matrislerin Kinematiği

Özet: Lineer bir dönüşüm aynı zamanda self-inverse (tersi kendisine eşit) ve anti-homomorfik ise involüsyon; self-inverse ve homomorfik ise anti-involüsyondur. Üç-boyutlu Öklid uzayı \mathbb{R}^{3} teki vida hareketleri dualkuaterniyonlar ile elde edilen (anti)-involüsyon dönüşümleri ile verilebilir. Biz bu çalışmada, dualkuaterniyonları kullanarak ikisi involüsyon dönüşüme diğer ikisi ise anti-involüsyon dönüşüme karşllık gelen dört tane matrisi geometrik yorumlarıyla birlikte ele aldık.

Anahtar Kelimeler: Reel-kuaterniyon, dual-kuaterniyon, (anti)-involüsyon, vida hareketi.
Matematik Konu Sinıflandırması (2010): 11R52, 53A25, 53A35, 70B10.

1. Introduction

Real-quaternions are non-commutative division algebra over the field real numbers \mathbb{R}, and are invented by Irish mathematician Sir William Rowan Hamilton in 1843. Hamilton tried to formalize three points in three-dimensional Euclidean space \mathbb{R}^{3} in the same way that two points can be formalized in the complex field \mathbb{C}. But, there exist a problem by multiplying real-quaternions. He overcame with this problem by using the three imaginary parts $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} satisfying the non-commutative multiplication rules

$$
\begin{gathered}
\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=\boldsymbol{i} \boldsymbol{j} \boldsymbol{k}=-1 \\
\boldsymbol{i} \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=\boldsymbol{k}, \boldsymbol{j} \boldsymbol{k}=-\boldsymbol{k} \boldsymbol{j}=\boldsymbol{i}, \boldsymbol{k} \boldsymbol{i}=-\boldsymbol{i} \boldsymbol{k}=\boldsymbol{j} .
\end{gathered}
$$

Quaternions are widely used in computer graphic technology, physics, kinematics, etc., since they are useful to perceive rotations, reflections and rigid-body (screw) motions. For instance, a reflection of a vector in a plane can be represented by an involution or anti-involution mapping obtained by real-quaternions, see [1]. In this paper, firstly the basic concepts of realand dual-quaternions will be given. Afterwards, we will represent four (anti)-involution
matrices obtained by dual-quaternions. The geometry of these matrices will be given as reflections in four-dimensional dual space \mathbb{D}^{4}, and as rigid-body (screw) motions in \mathbb{R}^{3} by restricting ourselves to unit pure dual-quaternions.

2. Preliminaries

In this section, a brief summary of the concepts real-quaternions, dual-quaternions and rigidbody (screw) motion will be given.

Real-quaternion algebra

$$
\mathbb{H}=\{q=w+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}: w, x, y, z \in \mathbb{R}\}
$$

is a four dimensional vector space over the field of real-numbers \mathbb{R} with a basis $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ satisfying the non-commutative multiplication rules

$$
\begin{gathered}
\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=\boldsymbol{i} \boldsymbol{j} \boldsymbol{k}=-1 \\
\boldsymbol{i} \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=\boldsymbol{k}, \boldsymbol{j} \boldsymbol{k}=-\boldsymbol{k} \boldsymbol{j}=\boldsymbol{i}, \boldsymbol{k} \boldsymbol{i}=-\boldsymbol{i} \boldsymbol{k}=\boldsymbol{j} .
\end{gathered}
$$

A real-quaternion $q=w+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ consists of a scalar part $S(q)=w \in \mathbb{R}$ and vector part $\boldsymbol{V}(q)=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} \in \mathbb{R}^{3}$. The quaternionic-conjugate of $q=S(q)+\boldsymbol{V}(q)$ is defined by $\bar{q}=S(q)-\boldsymbol{V}(q)$. If $S(q)=0$, then q is said to be a pure. The set of pure realquaternions will be denoted by

$$
\widehat{\mathbb{H}}=\{q=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}: x, y, z \in \mathbb{R}\} .
$$

The norm of q is

$$
N(q)=\|q\|=q \bar{q}=\bar{q} q=w^{2}+x^{2}+y^{2}+z^{2} \in \mathbb{R} .
$$

If $N(q)=1$ then q is said to be a unit.
The multiplicative inverse of q is valid only when q is non-zero and is given by

$$
q^{-1}=\frac{\bar{q}}{\|q\|} .
$$

Thus, the algebra \mathbb{H} is a division algebra.
The complex form of $q=w+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ is defined by

$$
\boldsymbol{q}=a+\boldsymbol{\mu} b
$$

where $a=w, b=\sqrt{x^{2}+y^{2}+z^{2}}$ and $\boldsymbol{\mu}=\frac{x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}}{b}$ for $b \neq 0$.
The algebra \mathbb{H} is isomorphic to the Clifford algebra $C l_{0,2}$ (i.e. $\mathbb{H} \cong C l_{0,2}$) in dimension 2 by defining the quaternionic units $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$, respectively, with the standard anti-commuting generators $e_{1}, e_{2}, e_{12}\left(=e_{1} e_{2}\right)$ in $C l_{0,2}$ where

$$
e_{1}^{2}=e_{2}^{2}=\left(e_{1} e_{2}\right)^{2}=-1 \text { and } e_{1} e_{2}=-e_{2} e_{1} .
$$

For more details about real-quaternions see [2-4].
Dual-number algebra

$$
\mathbb{D}=\left\{A=a+\varepsilon a^{*}: a, a^{*} \in \mathbb{R}\right\}
$$

is a two dimensional vector space over the field of real-numbers \mathbb{R} with a basis $\{1, \boldsymbol{\varepsilon}\}$, where a is the non-dual part, a^{*} is the dual part and $\boldsymbol{\varepsilon}$ is the dual unit satisfying $\boldsymbol{\varepsilon} \neq 0, \boldsymbol{\varepsilon} r=r \boldsymbol{\varepsilon}$ and $\boldsymbol{\varepsilon}^{2}=0$ for all $r \in \mathbb{R}$. The dual conjugate of a A is defined by $A^{\star}=a-\boldsymbol{\varepsilon} a^{*}$.

Dual-quaternion (also known as dual number coefficient-quaternion) algebra

$$
\mathbb{H}_{\mathbb{D}}=\{Q=W+X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}: W, X, Y, Z \in \mathbb{D}\}
$$

is a four dimensional vector space over the field of dual-numbers \mathbb{D} with the same basis $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ of real-quaternions, namely $\boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=\boldsymbol{i} \boldsymbol{j} \boldsymbol{k}=-1$ and $\boldsymbol{i} \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=\boldsymbol{k}, \boldsymbol{j} \boldsymbol{k}=$ $-\boldsymbol{k} \boldsymbol{j}=\boldsymbol{i}, \boldsymbol{k i}=-\boldsymbol{i} \boldsymbol{k}=\boldsymbol{j}$. The multiplication of the dual unit $\boldsymbol{\varepsilon}$ with the basis elements $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ is commutative that is $\boldsymbol{i} \boldsymbol{\varepsilon}=\boldsymbol{\varepsilon} \boldsymbol{i}, \boldsymbol{j} \boldsymbol{\varepsilon}=\boldsymbol{\varepsilon} \boldsymbol{j}, \boldsymbol{k} \boldsymbol{\varepsilon}=\boldsymbol{\varepsilon} \boldsymbol{k}$. A dual-quaternion $Q=W+X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$ consists of a scalar part $S(Q)=W \in \mathbb{D}$ and vector part $\boldsymbol{V}(Q)=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k} \in \mathbb{D}^{3}$. If $S(Q)=0$, then Q is called a pure. Pure dual-quaternions set will be denoted by

$$
\widehat{\mathbb{H}}_{\mathbb{D}}=\{Q=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}: X, Y, Z \in \mathbb{D}\} .
$$

The quaternionic-multiplication of dual-quaternions $Q_{1}=W_{1}+X_{1} \boldsymbol{i}+Y_{1} \boldsymbol{j}+Z_{1} \boldsymbol{k}$ and $Q_{2}=W_{2}+X_{2} \boldsymbol{i}+Y_{2} \boldsymbol{j}+Z_{2} \boldsymbol{k}$ is

$$
Q_{1} Q_{2}=S\left(Q_{1}\right) S\left(Q_{2}\right)-\left\langle\boldsymbol{V}\left(Q_{1}\right), \boldsymbol{V}\left(Q_{2}\right)\right\rangle+S\left(Q_{1}\right) \boldsymbol{V}\left(Q_{2}\right)+S\left(Q_{2}\right) \boldsymbol{V}\left(Q_{1}\right)+\boldsymbol{V}\left(Q_{1}\right) \wedge \boldsymbol{V}\left(Q_{2}\right)
$$

where $S\left(Q_{1}\right)=W_{1}, S\left(Q_{2}\right)=W_{2}, \boldsymbol{V}\left(Q_{1}\right)=X_{1} \boldsymbol{i}+Y_{1} \boldsymbol{j}+Z_{1} \boldsymbol{k}$ and $\boldsymbol{V}\left(Q_{2}\right)=X_{2} \boldsymbol{i}+Y_{2} \boldsymbol{j}+Z_{2} \boldsymbol{k}$. Also, $\left\langle\boldsymbol{V}\left(Q_{1}\right), \boldsymbol{V}\left(Q_{2}\right)\right\rangle=X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2} \in \mathbb{D}$ and $\boldsymbol{V}\left(Q_{1}\right) \wedge \boldsymbol{V}\left(Q_{2}\right)=\boldsymbol{i}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right)+$ $\boldsymbol{j}\left(Z_{1} X_{2}-Z_{2} X_{1}\right)+\boldsymbol{k}\left(X_{1} Y_{2}-X_{2} Y_{1}\right) \in \mathbb{D}^{3}$ denotes, respectively, the usual inner and vector products of $\boldsymbol{V}\left(Q_{1}\right)$ and $\boldsymbol{V}\left(Q_{2}\right)$ in \mathbb{D}^{3}.

The following three conjugate types can be given for Q :

1. Quaternion-conjugate: $\bar{Q}=W-X \boldsymbol{i}-Y \boldsymbol{j}-Z \boldsymbol{k}$
2. Dual-conjugate: $Q^{\star}=W^{\star}+X^{\star} \boldsymbol{i}+Y^{\star} \boldsymbol{j}+Z^{\star} \boldsymbol{k}$
3. Total-conjugate: $\overline{Q^{\star}}=W^{\star}-X^{\star} \boldsymbol{i}-Y^{\star} \boldsymbol{j}-Z^{\star} \boldsymbol{k}$

For dual-quaternions P and Q the following conjugation rules can be given:

1. $\overline{\mathcal{P} Q}=\bar{Q} \overline{\mathcal{P}},(\mathcal{P} Q)^{\star}=\mathcal{P}^{\star} Q^{\star}, \overline{(\mathcal{P} Q)^{\star}}=(\overline{\mathcal{P} Q})^{\star}=\overline{Q^{\star}} \overline{P^{\star}}$.
2. $\overline{\mathcal{P} \pm Q}=\overline{\mathcal{P}} \pm \bar{Q}=\bar{Q} \pm \overline{\mathcal{P}},(\mathcal{P} \pm Q)^{\star}=\mathcal{P}^{\star} \pm Q^{\star}=Q^{\star} \pm \mathcal{P}^{\star}, \overline{(\mathcal{P} \pm Q)^{\star}}=$ $(\overline{\mathcal{P} \pm Q})^{\star}=\overline{\mathcal{P}^{\star}} \pm \overline{Q^{\star}}=\overline{Q^{\star}} \pm \overline{\mathcal{P}^{\star}}$.
3. $Q \bar{Q}=\bar{Q} Q$ and in general $Q Q^{\star} \neq Q^{\star} Q, Q \overline{Q^{\star}} \neq \overline{Q^{\star}} Q$.

The norm of Q is

$$
N(Q)=\|Q\|=Q \bar{Q}=\bar{Q} Q=W^{2}+X^{2}+Y^{2}+Z^{2} \in \mathbb{D} .
$$

If $N(Q)=1$, then Q is said to be a unit.
A dual-quaternion $Q=W+X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$ can be represented in different forms. Three of them are shown below:

1. Dual form:

$$
Q=\mathfrak{R e}(Q)+\boldsymbol{\varepsilon} \mathfrak{D u}(Q),
$$

where $\mathfrak{R e}(Q)=w+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}=a+\boldsymbol{\mu} b$ and $\mathfrak{D u}(Q)=w^{*}+x^{*} \boldsymbol{i}+y^{*} \boldsymbol{j}+z^{*} \boldsymbol{k}=\mathrm{c}+\boldsymbol{v} d$ are real-quaternions.

2. Complex form:

$$
Q=A+\boldsymbol{\delta} B
$$

provided $\mathfrak{R e}(\boldsymbol{\delta})=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} \neq 0$. Here $\boldsymbol{\delta}=(X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}) / \sqrt{X^{2}+Y^{2}+Z^{2}}$ is a unit pure dual-quaternion; $A=W$ and $B=\sqrt{X^{2}+Y^{2}+Z^{2}}$ are dual-numbers.
3. Polar form:

$$
Q=\sqrt{N_{Q}}(\cos \phi+\boldsymbol{Q} \sin \phi)
$$

provided $\mathfrak{R e}(Q)=w+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} \neq 0$ and $\mathfrak{R e}(\boldsymbol{\delta})=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k} \neq 0$. Here $\phi \in \mathbb{D}$, $\cos \phi=W / \sqrt{N_{Q}}, \sin \varnothing=\sqrt{X^{2}+Y^{2}+Z^{2}} / \sqrt{N_{Q}}$ and $\boldsymbol{Q}=\boldsymbol{\delta}$.

The multiplicative inverse of Q is valid only if $\mathfrak{R e}(Q) \neq 0$ and is given by

$$
Q^{-1}=\frac{\bar{Q}}{N(Q)}
$$

According to E. Study map., all the oriented lines in \mathbb{R}^{3} are in one-to-one correspondence with the points of unit dual sphere \mathbb{D}^{3}. In other words, to each oriented line in \mathbb{R}^{3} corresponds a unit pure dual-quaternion, also to each unit pure dual-quaternion corresponds an oriented line in \mathbb{R}^{3}. For more details about dual-quaternions see [5-7].

2.1. Screw Operator

Let \boldsymbol{A} and \boldsymbol{B} be unit pure dual-quaternions and the angle between them $\varphi=\phi+\boldsymbol{\varepsilon} \boldsymbol{\phi}^{*} \in \mathbb{D}$. The quaternionic-multiplication of these unit pure dual-quaternions can be given as:

$$
\boldsymbol{A B}=-\langle\boldsymbol{A}, \boldsymbol{B}\rangle+\boldsymbol{A} \wedge \boldsymbol{B}=-\cos \varphi+\frac{\boldsymbol{A} \wedge \boldsymbol{B}}{\sqrt{\|\boldsymbol{A} \wedge \boldsymbol{B}\|}} \sqrt{\|\boldsymbol{A} \wedge \boldsymbol{B}\|}=-\cos \varphi+\boldsymbol{S} \sin \varphi
$$

where $\boldsymbol{S}=\boldsymbol{A} \wedge \boldsymbol{B} / \sqrt{\|\boldsymbol{A} \wedge \boldsymbol{B}\|}$ that means $\boldsymbol{S} \perp \boldsymbol{A}, \boldsymbol{S} \perp \boldsymbol{B}$ (so, \boldsymbol{S} is parallel to $\boldsymbol{A} \wedge \boldsymbol{B}$) and \| $\boldsymbol{S} \|=1$. Thus,

$$
\boldsymbol{B} \boldsymbol{A}=-\langle\boldsymbol{B}, \boldsymbol{A}\rangle+\boldsymbol{B} \wedge \boldsymbol{A}=-\cos \varphi-\boldsymbol{S} \sin \varphi=-(\cos \varphi+\boldsymbol{S} \sin \varphi)
$$

and

$$
\boldsymbol{B} \boldsymbol{A}^{-\mathbf{1}}=\boldsymbol{B}^{-1} \boldsymbol{A}=\cos \varphi+\boldsymbol{S} \sin \varphi .
$$

By taken $\boldsymbol{B} \boldsymbol{A}^{-\mathbf{1}}=\boldsymbol{B}^{\boldsymbol{- 1}} \boldsymbol{A}=Q$, it can be written $\boldsymbol{B}=Q \boldsymbol{A}$ and $\boldsymbol{A}=\boldsymbol{B} Q$.
The geometric interpretation of the product $Q \boldsymbol{A}$ in \mathbb{R}^{3} can be given as rotating the line $d_{\boldsymbol{A}}$ (corresponding to \boldsymbol{A}) by angle $\phi \in \mathbb{R}$ in positive direction about the line $d_{\boldsymbol{S}}$ (corresponding to \boldsymbol{S}), and translating by magnitude $\phi^{*} \in \mathbb{R}$ along the line $d_{\boldsymbol{S}}$, see Fig. 1 .

As a result he following two special cases can be given:

1. If $\phi \neq 0$ and $\phi^{*}=0$, then the operator $Q=\cos \varphi+\boldsymbol{S} \sin \varphi$ describes a rotation.
2. If $\phi^{*} \neq 0$ and $\phi=0$, then the operator $Q=\cos \varphi+\boldsymbol{S} \sin \varphi=1+\boldsymbol{\varepsilon} \boldsymbol{\phi}^{*} \boldsymbol{S}$ describes a translation.

SDU Journal of Science (E-Journal), 2016, 11 (2): $121-132$

Since a rotation about an axis and translation along the same axis describes a rigid-body (screw) motion, every unit dual-quaternion $Q=\cos \varphi+\boldsymbol{\operatorname { S i n }} \varphi$ can be handled as a screw operator.

Figure 1. Geometry of the rigid-body (screw) motion where $d_{\boldsymbol{A}}, d_{\boldsymbol{B}}$ and $d_{\boldsymbol{S}}$ denotes the lines corresponding to unit pure dual-quaternions $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{S}, respectively.

Proposition 1. Let \boldsymbol{A} be a unit pure dual-quaternion and $Q=\cos (\varphi / 2)+\boldsymbol{S} \sin (\varphi / 2)$ be a unit dual-quaternion where $\varphi / 2=(\phi / 2)+\boldsymbol{\varepsilon}\left(\phi^{*} / 2\right) \in \mathbb{D}$. Then the product $Q A \bar{Q}$ represents a rotation of the line $d_{\boldsymbol{A}}$ (corresponding to \boldsymbol{A}) by angle $\phi \in \mathbb{R}$ in positive direction about the line $d_{\boldsymbol{S}}$ (corresponding to \boldsymbol{S}), afterwards a translation with magnitude $\phi^{*} \in \mathbb{R}$ along $d_{\boldsymbol{S}}$.

3. (Anti)-Involution Matrices Of Dual Quaternions

In this section, two dual-quaternion matrices corresponding to dual-quaternion involution transformations and another two dual-quaternion matrices corresponding to dual-quaternion anti-involution transformations will be given. These matrices will be presented with their geometrical meanings as reflections in \mathbb{D}^{4}, and the matrices corresponding to dual-quaternion involution and anti-involution transformations' vector parts will be given with their geometrical meanings as rigid-body (screw) motions in \mathbb{R}^{3}.

A linear transformation f is an involution if it is self-inverse (i.e., $f(f(x))=x$) and antihomomorphic (i.e., $f\left(x_{1} x_{2}\right)=f\left(x_{2}\right) f\left(x_{1}\right)$). Also, f is said to be anti-involution if it is selfinverse and homomorphic (i.e., $f\left(x_{1} x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$), see [8].

3.1. Involution Matrices of Dual Quaternions

Proposition 2. Let $Q=A+\boldsymbol{\delta} B$ be an arbitrary dual-quaternion, then the transformation

$$
f_{\boldsymbol{V}}: \mathbb{H}_{\mathbb{D}} \rightarrow \mathbb{H}_{\mathbb{D}} ; \quad Q \mapsto f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \bar{Q} \boldsymbol{V}=A+\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V} B
$$

is an involution for a choosen unit pure dual-quaternion \boldsymbol{V}, see [7].
The geometry of the product $\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$ in \mathbb{R}^{3} can be given as: Let $\boldsymbol{\delta}=\vec{a}+\boldsymbol{\varepsilon}(\vec{A} \wedge \vec{a})$ and $\boldsymbol{V}=\vec{b}+$ $\boldsymbol{\varepsilon}(\vec{B} \wedge \vec{b})$ where the points A and B are the closest points to each other on the lines $d_{\boldsymbol{\delta}}$ and d_{V}, respectively. The line passing through the points A and B is the axis of the motion. By
taken $\overrightarrow{s_{0}}=\overrightarrow{A B} /|\overrightarrow{A B}|$, the direction of the translation of the motion is in the same direction of the vector $\overrightarrow{s_{0}}$ with magnitude $2 d=2|\overrightarrow{A B}|$. Denote by M the plane that includes the line d_{V} and is perpendicular to $\overrightarrow{s_{0}}$ and denote by $\overrightarrow{a_{1}}$ the unit orthogonal projection vector of \vec{a} on M. Define $\theta \in \mathbb{R}^{+}$as $\left\langle\overrightarrow{a_{1}}, \vec{b}\right\rangle=\cos \theta$, then the rotation of the motion occurs by angle $\pi-2 \theta \in$ \mathbb{R} in negative direction in both cases if $\left\{\overrightarrow{a_{1}}, \vec{b}, \overrightarrow{s_{0}}\right\}$ is a right-handed set (i.e. $\overrightarrow{s_{0}}=\overrightarrow{a_{1}} \wedge \vec{b}$) and if $\left\{\overrightarrow{a_{1}}, \vec{b}, \overrightarrow{s_{0}}\right\}$ is a left-handed set (i.e. $\overrightarrow{s_{0}}=\vec{b} \wedge \overrightarrow{a_{1}}$), see Fig. 2. Thus, $\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$ describes a rigid-body (screw) motion in \mathbb{R}^{3}. It is important to emphasize that this motion can also be given as a reflection of the line $d_{\boldsymbol{\delta}}$ about the line $d_{\boldsymbol{V}}$.

Now, we will give two screw operator formulas corresponding to the product $\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$; one if $\left\{\overrightarrow{a_{1}}, \vec{b}, \overrightarrow{s_{0}}\right\}$ is a right-handed set and one if $\left\{\overrightarrow{a_{1}}, \vec{b}, \overrightarrow{s_{0}}\right\}$ is a left-handed set.

1. If $\left\{\overrightarrow{a_{1}}, \vec{b}, \overrightarrow{0_{0}}\right\}$ is a right-handed set and if we take

$$
\begin{aligned}
Q & =\cos \left(\left(\frac{\pi}{2}-(-\theta)\right)+\boldsymbol{\varepsilon} d\right)+\boldsymbol{S} \sin \left(\left(\frac{\pi}{2}-(-\theta)\right)+\boldsymbol{\varepsilon} d\right) \\
& =(-\sin \theta-\boldsymbol{\varepsilon} d \cos \theta)+\boldsymbol{S}(\cos \theta-\boldsymbol{\varepsilon} d \sin \theta)
\end{aligned}
$$

then

$$
\bar{Q}=(-\sin \theta-\boldsymbol{\varepsilon} d \cos \theta)-\boldsymbol{S}(\cos \theta-\boldsymbol{\varepsilon} d \sin \theta)
$$

In this case, the operator $Q \boldsymbol{\delta} \bar{Q}$ will rotate the line $d_{\boldsymbol{\delta}}$ by angle $\pi-2 \theta \in \mathbb{R}$ in negative direction about the axis \boldsymbol{S} and translate with magnitude $2 d$ about the same axis \boldsymbol{S}. The translation is in the same direction with the axis vector \boldsymbol{S}. Thus, we can give the equation $Q \boldsymbol{\delta} \bar{Q}=\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$.
If unit pure dual-quaternions $\boldsymbol{\delta}$ and \boldsymbol{V} are parallel, then by taken

$$
\begin{aligned}
Q & =\cos \left(2\left(\frac{\pi}{2}-(-\theta)\right)+2 \boldsymbol{\varepsilon} d\right)+\boldsymbol{S} \sin \left(2\left(\frac{\pi}{2}-(-\theta)\right)+2 \boldsymbol{\varepsilon} d\right) \\
& =\cos ((\pi+2 \theta)+2 \boldsymbol{\varepsilon} d)+\boldsymbol{S} \sin ((\pi+2 \theta)+2 \boldsymbol{\varepsilon} d),
\end{aligned}
$$

we can give the equation $Q \boldsymbol{\delta} \bar{Q}=\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$ as $Q \boldsymbol{\delta}=\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$.
$d_{V \delta V}: \vec{c}+\varepsilon(\vec{C} \wedge \vec{c})$

Figure 2. Screw motion of the product $\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$ where the line $\mathrm{d}_{\boldsymbol{S}}$, which corresponds to unit pure dualquaternion $\boldsymbol{S}=\overrightarrow{s_{0}}+\boldsymbol{\varepsilon}\left(\vec{A} \wedge \overrightarrow{s_{0}}\right)$, denotes the axis of the motion and $|\overrightarrow{A B}|=|\overrightarrow{B C}|=d$.
2. If $\left\{\overrightarrow{a_{1}}, \vec{b}, \overrightarrow{s_{0}}\right\}$ is a left-handed set and if we take

$$
\begin{aligned}
Q & =\cos \left(\left(\frac{\pi}{2}-\theta\right)+\boldsymbol{\varepsilon} d\right)+\boldsymbol{S} \sin \left(\left(\frac{\pi}{2}-\theta\right)+\boldsymbol{\varepsilon} d\right) \\
& =(\sin \theta-\boldsymbol{\varepsilon} d \cos \theta)+\boldsymbol{S}(\cos \theta+\boldsymbol{\varepsilon} d \sin \theta)
\end{aligned}
$$

then

$$
\bar{Q}=(\sin \theta-\boldsymbol{\varepsilon} d \cos \theta)-\boldsymbol{S}(\cos \theta+\boldsymbol{\varepsilon} d \sin \theta)
$$

In this case, the operator $Q \boldsymbol{\delta} \bar{Q}$ will rotate the line $d_{\boldsymbol{\delta}}$ by angle $\pi-2 \theta \in \mathbb{R}$ in negative direction about the axis \boldsymbol{S} and translate with magnitude $2 d$ about the same axis \boldsymbol{S}. The translation is in the same direction with the axis vector \boldsymbol{S}. Thus, we can give the equation $Q \boldsymbol{\delta} \bar{Q}=\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$.

If unit pure dual-quaternions $\boldsymbol{\delta}$ and \boldsymbol{V} are parallel, then by taken

$$
\begin{aligned}
Q & =\cos \left(2\left(\frac{\pi}{2}-\theta\right)+2 \boldsymbol{\varepsilon} d\right)+\boldsymbol{S} \sin \left(2\left(\frac{\pi}{2}-\theta\right)+2 \boldsymbol{\varepsilon} d\right) \\
& =\cos ((\pi-2 \theta)+2 \boldsymbol{\varepsilon} d)+\boldsymbol{S} \sin ((\pi-2 \theta)+2 \boldsymbol{\varepsilon} d)
\end{aligned}
$$

we can give the equation $Q \boldsymbol{\delta} \bar{Q}=\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$ as $Q \boldsymbol{\delta}=\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V}$.
Now, the matrix representation will be obtained corresponding to the involution transformation $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \bar{Q} \boldsymbol{V}$ for a choosen unit pure dual-quaternion $\boldsymbol{V}=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$:

$$
\begin{aligned}
& f_{\boldsymbol{V}}(1)=-\boldsymbol{V} \overline{1} \boldsymbol{V}=1 \\
& f_{\boldsymbol{V}}(\boldsymbol{i})=-\boldsymbol{V} \overline{\boldsymbol{l}} \boldsymbol{V}=\left(1-2 X^{2}\right) \boldsymbol{i}-2 X Y \boldsymbol{j}-2 X Z \boldsymbol{k} \\
& f_{\boldsymbol{V}}(\boldsymbol{j})=-\boldsymbol{V} \boldsymbol{J} \boldsymbol{V}=-2 X Y \boldsymbol{i}+\left(1-2 Y^{2}\right) \boldsymbol{j}-2 Y Z \boldsymbol{k} \\
& f_{\boldsymbol{V}}(\boldsymbol{k})=-\boldsymbol{V} \overline{\boldsymbol{k}} \boldsymbol{V}=-2 X Z \boldsymbol{i}-2 Y Z \boldsymbol{j}+\left(1-2 Z^{2}\right) \boldsymbol{k}
\end{aligned}
$$

Thus, the matrix product of the involution transformation $f_{V}(Q)=-\boldsymbol{V} \bar{Q} \boldsymbol{V}$ can be given as

$$
T Q:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1-2 X^{2} & -2 X Y & -2 X Z \\
0 & -2 X Y & 1-2 Y^{2} & -2 Y Z \\
0 & -2 X Z & -2 Y Z & 1-2 Z^{2}
\end{array}\right]\left[\begin{array}{c}
A \\
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

where $Q=A+\boldsymbol{\delta} B, \boldsymbol{\delta} B=\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$, and the 4×1 matrix corresponds to Q while the 4×4 matrix corresponds to T. It can be easily checked that T is orthogonal, symmetric and $\operatorname{det}(T)=-1$ that means $f_{V}(Q)$ represents a reflection in \mathbb{D}^{4}. Another geometric interpretation of the linear transformation $f_{V}(Q)$ can be given as: It leaves the scalar part A of Q invariant, and in \mathbb{R}^{3} it reflects the line $d_{\boldsymbol{\delta}}$ (corresponding to $\boldsymbol{\delta}=\boldsymbol{\delta} B / \sqrt{\boldsymbol{\delta} B}$) about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}), and afterwards changes the direction of the line (obtained after the reflection) oppositely.

Corollary 1. Let $Q=\boldsymbol{\delta} B=\eta_{1} \boldsymbol{i}+\eta_{2} \boldsymbol{j}+\eta_{3} \boldsymbol{k}$ be a pure and $\boldsymbol{V}=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$ be a choosen unit pure dual-quaternions. Then, the matrix product

$$
\left[\begin{array}{ccc}
1-2 X^{2} & -2 X Y & -2 X Z \\
-2 X Y & 1-2 Y^{2} & -2 Y Z \\
-2 X Z & -2 Y Z & 1-2 Z^{2}
\end{array}\right]\left[\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

reflects the line $d_{\boldsymbol{\delta}}$ (corresponding to $\boldsymbol{\delta}=\boldsymbol{\delta} B / \sqrt{\boldsymbol{\delta} B}$) about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}) and afterwards changes the direction of the line (obtained after reflection) oppositely.

Example 1. Let

$$
P=\left(\frac{1-\varepsilon}{\sqrt{3}}\right) i+\left(\frac{1+\boldsymbol{\varepsilon}}{\sqrt{3}}\right) j+\frac{1}{\sqrt{3}} k, \quad V=j
$$

be dual-quaternions. The matrix product of the involution transformation $f_{V}(Q)=-\boldsymbol{V} \overline{\boldsymbol{P}} \boldsymbol{V}$ can be given as

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1-\boldsymbol{\varepsilon} \\
1+\boldsymbol{\varepsilon} \\
1
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1-\boldsymbol{\varepsilon} \\
-1-\boldsymbol{\varepsilon} \\
1
\end{array}\right]
$$

that is $f_{V}(Q)$ reflects the line corresponding to \boldsymbol{P} about the line corresponding to \boldsymbol{V}, and afterwards changes its direction oppositely in \mathbb{R}^{3}. Furthermore, since $\boldsymbol{S}=-\boldsymbol{k}$ and $\{\boldsymbol{P}, \boldsymbol{V}, \boldsymbol{S}\}$ is a left-handed set, the product $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \overline{\boldsymbol{P}} \boldsymbol{V}$ can be given as a screw operator $Q \boldsymbol{P} \bar{Q}$, where

$$
\begin{aligned}
Q & =\left(\sin \frac{\pi}{4}-\boldsymbol{\varepsilon} \cos \frac{\pi}{4}\right)-\boldsymbol{k}\left(\cos \frac{\pi}{4}+\boldsymbol{\varepsilon} \sin \frac{\pi}{4}\right) \\
& =\left(\frac{\sqrt{2}}{2}-\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right)-\boldsymbol{k}\left(\frac{\sqrt{2}}{2}+\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right) .
\end{aligned}
$$

Proposition 3. Let $Q=\left(a+\mu_{1} b\right)+\boldsymbol{\varepsilon}\left(c+\omega_{1} e\right)$ be an arbitrary dual-quaternion and $\boldsymbol{V}=(\mp \boldsymbol{\mu})+\boldsymbol{\varepsilon}(\boldsymbol{\omega} d)$ be a choosen unit pure dual-quaternion and $\boldsymbol{\mu} \perp \boldsymbol{\omega}$. Then, the transformation

$$
f_{\boldsymbol{V}}: \mathbb{H}_{\mathbb{D}} \rightarrow \mathbb{H}_{\mathbb{D}} ; \quad Q \mapsto f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \overline{\left(Q^{\star}\right)} \boldsymbol{V}=A^{\star}+\boldsymbol{V} \boldsymbol{\delta}^{\star} \boldsymbol{V} B^{\star}
$$

is an involution under the following two restrictions, see [3]:
(i) If $\boldsymbol{V}= \pm \boldsymbol{\mu}$ then $Q=\left(a+\boldsymbol{\mu}_{1} b\right)+\boldsymbol{\varepsilon}\left(c+\boldsymbol{\omega}_{1} e\right)$,
(ii) If $Q=(a \pm \boldsymbol{\mu} \boldsymbol{\omega} b)+\boldsymbol{\varepsilon}(c \pm \boldsymbol{\mu} \boldsymbol{\omega} e)$ then $\boldsymbol{V}=\mp \boldsymbol{\mu}+\boldsymbol{\varepsilon}(\boldsymbol{\omega} d)$ where $d \neq 0$.

The matrix product of the involution transformation $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \overline{\left(Q^{\star}\right)} \boldsymbol{V}$ can be given as

$$
T \overline{\left(Q^{\star}\right)}:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 X^{2}-1 & 2 X Y & 2 X Z \\
0 & 2 X Y & 2 Y^{2}-1 & 2 Y Z \\
0 & 2 X Z & 2 Y Z & 2 Z^{2}-1
\end{array}\right]\left[\begin{array}{l}
\frac{A^{\star}}{\left(\eta_{1}{ }^{\star}\right)} \\
\frac{\left(\eta_{2}{ }^{\star}\right)}{\left(\eta_{3}{ }^{\star}\right)}
\end{array}\right]
$$

where $\overline{\left(Q^{\star}\right)}=A^{\star}-(\boldsymbol{\delta} B)^{\star},(\boldsymbol{\delta} B)^{\star}=\left(\overline{\left(\eta_{1}{ }^{\star}\right)}, \overline{\left(\eta_{2}{ }^{\star}\right)}, \overline{\left(\eta_{3}{ }^{\star}\right)}\right)$, and the 4×1 matrix corresponds to $\overline{\left(Q^{\star}\right)}$ while the 4×4 matrix corresponds to T. Since T is orthogonal, symmetric and $\operatorname{det}(T)=-1$, the linear transformation $f_{V}(Q)$ represents a reflection in \mathbb{D}^{4}. Another geometric interpretation of the linear transformation $f_{V}(Q)$ can be given as: It reflects the scalar part A of Q about the real-axis of dual-plane, and in \mathbb{R}^{3} it reflects the line $d_{\boldsymbol{\delta}^{*}}$ (corresponding to $\boldsymbol{\delta}^{*}=(\boldsymbol{\delta} B)^{\star} / \sqrt{(\boldsymbol{\delta} B)^{\star}}$) about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}), and afterwards changes the direction of the line (obtained after the reflection) oppositely.

Corollary 2. Let $Q=\boldsymbol{\delta} B=\eta_{1} \boldsymbol{i}+\eta_{2} \boldsymbol{j}+\eta_{3} \boldsymbol{k}$ be a pure and $\boldsymbol{V}=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$ be a choosen unit pure dual-quaternions with the two restrictions given by Proposition 3. Then, the matrix product

$$
\left[\begin{array}{ccc}
2 X^{2}-1 & 2 X Y & 2 X Z \\
2 X Y & 2 Y^{2}-1 & 2 Y Z \\
2 X Z & 2 Y Z & 2 Z^{2}-1
\end{array}\right]\left[\begin{array}{|c}
\frac{\left(\eta_{1}{ }^{\star}\right)}{\left(\eta_{2}{ }^{\star}\right)} \\
\left(\eta_{3}{ }^{\star}\right)
\end{array}\right]
$$

reflects the line $d_{\boldsymbol{\delta}^{*}}$ (corresponding to $\boldsymbol{\delta}^{*}=(\boldsymbol{\delta} B)^{\star} / \sqrt{(\boldsymbol{\delta} B)^{\star}}$) about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}) and afterwards changes the direction of the line (obtained after reflection) oppositely.

Example 2. Let

$$
P=\left(\frac{-1-\boldsymbol{\varepsilon}}{\sqrt{3}}\right) \boldsymbol{i}+\left(\frac{1-\boldsymbol{\varepsilon}}{\sqrt{3}}\right) \boldsymbol{j}+\frac{1}{\sqrt{3}} k, \quad V=\boldsymbol{j}
$$

be dual-quaternions. The matrix product of the involution transformation $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \overline{\left(\boldsymbol{P}^{\star}\right)} \boldsymbol{V}$ can be given as

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1-\varepsilon \\
-1-\varepsilon \\
-1
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1+\varepsilon \\
-1-\varepsilon \\
1
\end{array}\right]
$$

that is $f_{\boldsymbol{V}}(Q)$ reflects the line corresponding to \boldsymbol{P}^{\star} about the line corresponding to \boldsymbol{V} and afterwards changes its direction oppositely in \mathbb{R}^{3}. Furthermore, since $\boldsymbol{S}=\boldsymbol{k}$ and $\left\{\boldsymbol{P}^{\star}, \boldsymbol{V}, \boldsymbol{S}\right\}$ is a left-handed set, the product $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \overline{\left(\boldsymbol{P}^{\star}\right)} \boldsymbol{V}$ can be given as a screw operator $Q \boldsymbol{P}^{\star} \bar{Q}$, where

$$
\begin{aligned}
Q & =\left(\sin \frac{\pi}{4}-\boldsymbol{\varepsilon} \cos \frac{\pi}{4}\right)+\boldsymbol{k}\left(\cos \frac{\pi}{4}+\boldsymbol{\varepsilon} \sin \frac{\pi}{4}\right) \\
& =\left(\frac{\sqrt{2}}{2}-\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right)+\boldsymbol{k}\left(\frac{\sqrt{2}}{2}+\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

3.2. Anti-Involution Matrices of Dual Quaternions

Proposition 4. Let $Q=\left(a+\mu_{1} b\right)+\varepsilon\left(c+\omega_{1} e\right)$ be an arbitrary dual-quaternion and $\boldsymbol{V}=(\mp \boldsymbol{\mu})+\boldsymbol{\varepsilon}(\boldsymbol{\omega} d)$ be a choosen unit pure dual-quaternion for $\boldsymbol{\mu} \perp \boldsymbol{\omega}$. Then, the transformation

$$
f_{V}: \mathbb{H}_{\mathbb{D}} \rightarrow \mathbb{H}_{\mathbb{D}} ; \quad Q \mapsto f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} Q^{\star} \boldsymbol{V}=A^{\star}-\boldsymbol{V} \boldsymbol{\delta}^{\star} \boldsymbol{V} B^{\star}
$$

is an anti-involution under the following two restrictions, see [7]:
(i) If $\boldsymbol{V}= \pm \boldsymbol{\mu}$ then $Q=\left(a+\boldsymbol{\mu}_{1} b\right)+\boldsymbol{\varepsilon}\left(c+\boldsymbol{\omega}_{1} e\right)$,
(ii) If $Q=(a \pm \boldsymbol{\mu} \boldsymbol{\omega} b)+\boldsymbol{\varepsilon}(c \pm \boldsymbol{\mu} \boldsymbol{\omega} e)$ then $\boldsymbol{V}=\mp \boldsymbol{\mu}+\boldsymbol{\varepsilon}(\boldsymbol{\omega} d)$ where $d \neq 0$.

The matrix product of the anti-involution transformation $f_{V}(Q)=-\boldsymbol{V} Q^{\star} \boldsymbol{V}$ can be given as

$$
T Q^{\star}:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 X^{2}-1 & 2 X Y & 2 X Z \\
0 & 2 X Y & 2 Y^{2}-1 & 2 Y Z \\
0 & 2 X Z & 2 Y Z & 2 Z^{2}-1
\end{array}\right]\left[\begin{array}{c}
A^{\star} \\
\eta_{1}{ }^{\star} \\
\eta_{2}{ }^{\star} \\
\eta_{3}{ }^{\star}
\end{array}\right]
$$

where $Q^{\star}=A^{\star}+(\boldsymbol{\delta} B)^{\star},(\boldsymbol{\delta} B)^{\star}=\left(\eta_{1}{ }^{\star}, \eta_{2}{ }^{\star}, \eta_{3}{ }^{\star}\right), \boldsymbol{V}=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$, and the 4×1 matrix corresponds to Q^{\star} while the 4×4 matrix corresponds to T. Since T is orthogonal, symmetric and $\operatorname{det}(T)=+1$, the linear transformation $f_{V}(Q)$ represents a rotation in \mathbb{D}^{4}. Another geometric interpretation of the linear transformation $f_{V}(Q)$ can be given as: It reflects the scalar part A of Q about the real-axis of dual-plane, and in \mathbb{R}^{3} it reflects the line $d_{\boldsymbol{\delta}^{*}}$ (corresponding to $\boldsymbol{\delta}^{*}=(\boldsymbol{\delta} B)^{\star} / \sqrt{(\boldsymbol{\delta} B)^{\star}}$) about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}).

Corollary 3. Let $Q=\boldsymbol{\delta} B=\eta_{1} \boldsymbol{i}+\eta_{2} \boldsymbol{j}+\eta_{3} \boldsymbol{k}$ be a pure and $\boldsymbol{V}=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$ be a choosen unit pure dual-quaternions with the two restrictions given by Propositin 4. Then the matrix product

$$
\left[\begin{array}{ccc}
2 X^{2}-1 & 2 X Y & 2 X Z \\
2 X Y & 2 Y^{2}-1 & 2 Y Z \\
2 X Z & 2 Y Z & 2 Z^{2}-1
\end{array}\right]\left[\begin{array}{c}
\eta_{1}{ }^{\star} \\
\eta_{2}{ }^{\star} \\
\eta_{3}{ }^{\star}
\end{array}\right]
$$

reflects the line $d_{\boldsymbol{\delta}^{*}}\left(\right.$ corresponding to $\boldsymbol{\delta}^{*}=(\boldsymbol{\delta} B)^{\star} / \sqrt{(\boldsymbol{\delta} B)^{\star}}$ about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}).

Example 3. Let

$$
P=\frac{1}{\sqrt{3}} i+\left(\frac{1+\varepsilon}{\sqrt{3}}\right) j+\left(\frac{1-\varepsilon}{\sqrt{3}}\right) k, \quad V=j
$$

be dual-quaternions. The matrix product of the anti-involution transformation $f_{V}(Q)=$ $-\boldsymbol{V} \boldsymbol{P}^{\star} \boldsymbol{V}$ can be given as

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
1-\varepsilon \\
1+\varepsilon
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
1-\varepsilon \\
-1-\varepsilon
\end{array}\right]
$$

that is $f_{\boldsymbol{V}}(Q)$ reflects the line corresponding to \boldsymbol{P}^{\star} about the line corresponding to \boldsymbol{V}. Furthermore, since $\boldsymbol{S}=-\boldsymbol{i}$ and $\left\{\boldsymbol{P}^{\star}, \boldsymbol{V}, \boldsymbol{S}\right\}$ is a right-handed set, the product $f_{\boldsymbol{V}}(Q)=$ $-\boldsymbol{V} \overline{\left(\boldsymbol{P}^{\star}\right)} \boldsymbol{V}$ can be given as a screw operator $-Q \boldsymbol{P}^{\star} \bar{Q}$, where

$$
\begin{aligned}
Q & =\left(-\sin \frac{\pi}{4}-\varepsilon \cos \frac{\pi}{4}\right)-\boldsymbol{i}\left(\cos \frac{\pi}{4}-\varepsilon \sin \frac{\pi}{4}\right) \\
& =\left(-\frac{\sqrt{2}}{2}-\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right)-\boldsymbol{i}\left(\frac{\sqrt{2}}{2}-\varepsilon \frac{\sqrt{2}}{2}\right) .
\end{aligned}
$$

Proposition 5. Let $Q=A+\boldsymbol{\delta} B$ be an arbitrary dual-quaternion, then the transformation

$$
f_{\boldsymbol{V}}: \mathbb{H}_{\mathbb{D}} \rightarrow \mathbb{H}_{\mathbb{D}} ; \quad Q \mapsto f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} Q \boldsymbol{V}=A-\boldsymbol{V} \boldsymbol{\delta} \boldsymbol{V} B
$$

is an anti-involution for a choosen unit pure dual-quaternion \boldsymbol{V}, see [7].
The matrix product of the anti-involution transformation $f_{V}(Q)=-\boldsymbol{V} Q \boldsymbol{V}$ can be given as

$$
T Q:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 X^{2}-1 & 2 X Y & 2 X Z \\
0 & 2 X Y & 2 Y^{2}-1 & 2 Y Z \\
0 & 2 X Z & 2 Y Z & 2 Z^{2}-1
\end{array}\right]\left[\begin{array}{c}
A \\
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

where $Q=A+\boldsymbol{\delta} B, \boldsymbol{\delta} B=\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$, and the 4×1 matrix corresponds to Q while the 4×4 matrix corresponds to T. It can be easily checked that T is orthogonal, symmetric and $\operatorname{det}(T)=+1$ that means $f_{V}(Q)$ represents a rotation in \mathbb{D}^{4}. Also, the geometry of the linear transformation $f_{V}(Q)$ can be given in \mathbb{R}^{3} as: It leaves the scalar part A of Q invariant, and in \mathbb{R}^{3} it reflects the line $d_{\boldsymbol{\delta}}$ (corresponding to $\boldsymbol{\delta}=\boldsymbol{\delta} B / \sqrt{\boldsymbol{\delta} B}$) about the line $d_{\boldsymbol{V}}$ (corresponding to V).

Corollary 4. Let $Q=\boldsymbol{\delta} B=\eta_{1} \boldsymbol{i}+\eta_{2} \boldsymbol{j}+\eta_{3} \boldsymbol{k}$ be a pure and $\boldsymbol{V}=X \boldsymbol{i}+Y \boldsymbol{j}+Z \boldsymbol{k}$ be a choosen unit pure dual-quaternions. Then, the matrix product

$$
\left[\begin{array}{ccc}
2 X^{2}-1 & 2 X Y & 2 X Z \\
2 X Y & 2 Y^{2}-1 & 2 Y Z \\
2 X Z & 2 Y Z & 2 Z^{2}-1
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

reflects the line $d_{\boldsymbol{\delta}}$ (corresponding to $\boldsymbol{\delta}=\boldsymbol{\delta} B / \sqrt{\boldsymbol{\delta B}}$) about the line $d_{\boldsymbol{V}}$ (corresponding to \boldsymbol{V}).

Example 4. Let

$$
P=\left(\frac{1-\varepsilon}{\sqrt{3}}\right) i+\left(\frac{1+\varepsilon}{\sqrt{3}}\right) j+\frac{1}{\sqrt{3}} k, \quad V=j
$$

be dual-quaternions. The matrix product of the involution transformation $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \boldsymbol{P} \boldsymbol{V}$ can be given as

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1-\varepsilon \\
1+\varepsilon \\
1
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1+\varepsilon \\
1+\varepsilon \\
-1
\end{array}\right]
$$

that is $f_{V}(Q)$ reflects the line corresponding to \boldsymbol{P} about the line corresponding to \boldsymbol{V}. Furthermore, since $\boldsymbol{S}=-\boldsymbol{k}$ and $\{\boldsymbol{P}, \boldsymbol{V}, \boldsymbol{S}\}$ is a left-handed set, the product $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} \boldsymbol{P} \boldsymbol{V}$ can be given as a screw operator $-Q \boldsymbol{P} \bar{Q}$, where

$$
\begin{aligned}
Q & =\left(\sin \frac{\pi}{4}-\varepsilon \cos \frac{\pi}{4}\right)-\boldsymbol{k}\left(\cos \frac{\pi}{4}+\boldsymbol{\varepsilon} \sin \frac{\pi}{4}\right) \\
& =\left(\frac{\sqrt{2}}{2}-\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right)-\boldsymbol{k}\left(\frac{\sqrt{2}}{2}+\boldsymbol{\varepsilon} \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

4. Conclusion

The matrices of the dual-quaternion involution transformations $f_{V}(Q)=-\boldsymbol{V} \bar{Q} \boldsymbol{V}$ and $f_{\boldsymbol{V}}(Q)=$ $-\boldsymbol{V} \overline{\left(Q^{\star}\right)} \boldsymbol{V}$ represent reflections in \mathbb{D}^{4}, however they represent reflections in \mathbb{R}^{3}. Also, the matrices of the anti-involution transformations $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} Q^{\star} \boldsymbol{V}$ and $f_{\boldsymbol{V}}(Q)=-\boldsymbol{V} Q \boldsymbol{V}$ represent rotations in \mathbb{D}^{4}, however they represent reflection in \mathbb{R}^{3}.

References

[1] T. A. Ell and S. J. Sangwine, Quaternion involutions and anti-involutions, Computers \& Mathematics with Applications, 53 (2007), pp. 137-143.
[2] W.R. Hamilton, On a new species of imaginary quantities connected with the theory of quaternions, Proceedings of the Royal Irish Academy 2 (1844), pp. 424-434.
[3] J. B. Kuipers, Quaternions and Rotation Sequences, Published by Princenton University Press, New Jersey, 1999.
[4] J. P. Ward, Quaternions and Cayley Algebrs and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[5] O. P. Agrawal, Hamilton Operatorsand Dualnumber-quaternions in Spatial Kinematic, Mech. Mach. Theory, 22 (1987), pp. 569-575.
[6] E. Ata and Y. Yayli, Dual Unitary Matrices and Unit Dual Quaternions, Differential Geometry Dynamical Systems, 10 (2008), pp. 1-12.
[7] M. Bekar and Y. Yayli, Dual Quaternion Involutions and Anti-Involutions, Advances in Applied Clifford Algebras 23 (2013) , pp. 577-592.
[8] M. Hazewinkel (Ed.), Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet 'Mathematical Encyclopaedia', Kluwer, Dordrecht, 1988-1994.

Yusuf Yaylı e-mail: yayli@science.ankara.edu.tr

