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Abstract: Rigid-body (screw) motions in three-dimensional Euclidean space R? can be represented by
involution (resp. anti-involution) mappings obtained by dual-quaternions which are self-inverse and
homomorphic (resp. anti-homomrphic) linear mappings. In this paper, we will represent four dual-quaternion
matrices with their geometrical meanings; two of them correspond to involution mappings, while the other two
correspond to anti-involution mappings.
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Dual Kuaterniyon Involiisyon Matrislerin Kinematigi

Ozet: Lineer bir doniisiim ayn1 zamanda self-inverse (tersi kendisine esit) ve anti-homomorfik ise involiisyon;

self-inverse ve homomorfik ise anti-involiisyondur. Ug-boyutlu Oklid uzayr R® teki vida hareketleri dual-
kuaterniyonlar ile elde edilen (anti)-involisyon doniigimleri ile wverilebilir. Biz bu ¢alismada, dual-
kuaterniyonlar1 kullanarak ikisi involiisyon doniisiime diger ikisi ise anti-involiisyon doniisiime karsilik gelen
dort tane matrisi geometrik yorumlariyla birlikte ele aldik.

Anahtar Kelimeler: Reel-kuaterniyon, dual-kuaterniyon, (anti)-involiisyon, vida hareketi.
Matematik Konu Siniflandirmast (2010): 11R52, 53A25, 53A35, 70B10.

1. Introduction

Real-quaternions are non-commutative division algebra over the field real numbers R, and are
invented by Irish mathematician Sir William Rowan Hamilton in 1843. Hamilton tried to
formalize three points in three-dimensional Euclidean space R3 in the same way that two
points can be formalized in the complex field C. But, there exist a problem by multiplying
real-quaternions. He overcame with this problem by using the three imaginary parts i, j and k
satisfying the non-commutative multiplication rules

i?=j?=k?=ijk=-1,
ij=—ji=k, jk=—-kj=1i ki=-ik=]j.
Quaternions are widely used in computer graphic technology, physics, kinematics, etc., since
they are useful to perceive rotations, reflections and rigid-body (screw) motions. For instance,
a reflection of a vector in a plane can be represented by an involution or anti-involution

mapping obtained by real-quaternions, see [1]. In this paper, firstly the basic concepts of real-
and dual-quaternions will be given. Afterwards, we will represent four (anti)-involution
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matrices obtained by dual-quaternions. The geometry of these matrices will be given as
reflections in four-dimensional dual space D*, and as rigid-body (screw) motions in R3 by
restricting ourselves to unit pure dual-quaternions.

2. Preliminaries

In this section, a brief summary of the concepts real-quaternions, dual-quaternions and rigid-
body (screw) motion will be given.

Real-quaternion algebra

H={q=w+xi+yj+zk: w,x,y,z€R}
is a four dimensional vector space over the field of real-numbers R with a basis {1, i, j, k}
satisfying the non-commutative multiplication rules
i’ =j2=k?=ijk=—1,
ij=—ji=k, jk=—kj=i ki=—-ik=7j.
A real-quaternion g = w + xi + yj + zk consists of a scalar part S(q) = w € Rand vector
part V(q) = xi +yj + zk € R3. The quaternionic-conjugate of g = S(q) + V(q) is

defined by g = S(q) —V(q). If S(q) = 0, then q is said to be a pure. The set of pure real-
quaternions will be denoted by

H={q=xi+yj+zk:x,y,z€R}.
The norm of g is
N@=lqll=qg = Ggqg= w?+x2+y?+z2€R.
If N(q) = 1then q is said to be a unit.

The multiplicative inverse of q is valid only when g is non-zero and is given by

Thus, the algebra H is a division algebra.
The complex form of ¢ = w + xi + yj + zk is defined by

q=a+ub

wherea =w, b = /x? + y? + z% and M=W for b # 0.

The algebra H is isomorphic to the Clifford algebra Cl,, (i.e. H = Cl, ;) in dimension 2 by
defining the quaternionic units i, j, k, respectively, with the standard anti-commuting
generators ey, e,, e1,(= eje,) in Cly, where

e? =e? = (eje;)? =—1 and eje, = —eye;.
For more details about real-quaternions see [2 — 4].

Dual-number algebra
D={A=a+¢&a":a,a" € R}
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is a two dimensional vector space over the field of real-numbers R with a basis {1, £}, where
a is the non-dual part, a* is the dual part and & is the dual unit satisfying € # 0, er = re and
€2 = 0 for all » € R. The dual conjugate of a A4 is defined by A* = a — €a*.

Dual-quaternion (also known as dual number coefficient-quaternion) algebra
Hp ={Q =W +Xi+Yj+Zk:W,X,Y,Z € D}

is a four dimensional vector space over the field of dual-numbers D with the same basis
{1,i,j,k} of real-quaternions, namely i? = j? = k? = ijk = —1 and ij = —ji = k, jk =
—kj =i, ki = —ik = j. The multiplication of the dual unit £ with the basis elements i, j, k is
commutative that is ie = €i, je = €j, ke = €k. A dual-quaternion Q = W + Xi+Yj + Zk
consists of a scalar part S(Q) =W € D and vector part V(Q) =Xi+Yj+Zk e D3. If
S(Q) = 0, then Q is called a pure. Pure dual-quaternions set will be denoted by

Hp={Q=Xi+Yj+Zk:X,Y,Z € D}.
The quaternionic-multiplication of dual-quaternions Q; = W; + X;i+Yyj + Z k and
Q2 = W2 +X2i + Y2j +Z2k |S
Q1Q2 = S(Q1)S(Q2) — (V(Q1),V(Q2)) + S(QV(Q2) + S(Q)V(Q1) + V(QDAV(Q2)

Where S(Ql) = Wl’ S(Qz) = Wz, V(Ql) = Xli + Ylj + Zlk and V(Qz) = Xzi + Yzj + sz
Also, (V(Q),V(Q))=XXo+ V1Y, +2Z,Z; €D and V(QIAV(Q2) = i(Y1Z; — Y2Z4) +
j(Z.X, — Z,X,) + k(X Y, — X,Y;) € D3 denotes, respectively, the usual inner and vector
products of V(Q,) and V(Q,) in D3.

The following three conjugate types can be given for Q:
1. Quaternion-conjugate: Q =W — Xi—Yj — Zk
2. Dual-conjugate: Q* = W*+ X*i+Y*j+Z"k
3. Total-conjugate: Q* = W* — X*i —Y*j — Z*k

For dual-quaternions P and Q the following conjugation rules can be given:
1 PQ=QP,(PQ) =P*Q", (PQ)* =(PQ)" =Q* P*.
2. P+Q0=P+0Q0=Q+P, (P+Q) =P +Q*=Q*"+P*, (P+0Q) =
@P+Q)* =P +Q* =Q* +P*.
3. QQ = QQ and in general QQ* # Q*Q, Q Q* # Q*Q.

The norm of Q is

NQ=1QI=QQ=QQ=W?+X?>+Y2+Z7%€D.
If N(Q) = 1, then Q is said to be a unit.
A dual-quaternion Q = W + Xi+ Yj + Zk can be represented in different forms. Three of
them are shown below:
1. Dual form:

Q = Re(Q) + £Du(Q),

where Re(Q) =w+xi+yj+zk=a+puband Du(Q) =w*"+x*i+yj+z’k=c+vd
are real-quaternions.
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2. Complex form:
Q=A+6B
provided Re(8) = xi+yj+zk #0. Here § = (Xi+Yj+Zk)/VX? +Y?+Z?% is a unit
pure dual-quaternion; A = W and B = VX2 + Y2 + Z2 are dual-numbers.
3. Polar form:

Q = /N, (cos¢ + Qsing)
provided Re(Q) =w+xi+yj+zk+0and Re(d) =xi+yj+zk+0. Here p €D,
cosp =W /,[Ny, sind =VX2+Y2+272 /[N, and Q = .

The multiplicative inverse of Q is valid only if Re(Q) # 0 and is given by

Q

-1 _ _x%
TN

According to E. Study map., all the oriented lines in R3 are in one-to-one correspondence with
the points of unit dual sphere D3. In other words, to each oriented line in R3 corresponds a
unit pure dual-quaternion, also to each unit pure dual-quaternion corresponds an oriented line
in R3. For more details about dual-quaternions see [5 — 7].

2.1. Screw Operator

Let A and B be unit pure dual-quaternions and the angle between them ¢ = ¢ + €¢p* € D.
The quaternionic-multiplication of these unit pure dual-quaternions can be given as:

AAB
AB =—(A,B) + AANB = —cosp + m\/ll AAB | = —cosp + Ssing
where S=AAB /\/IIAAB | that means S LA, S L B (so, S is parallel to AAB) and
Il S Il = 1. Thus,
BA = —(B,A) + BANA = —cosp — Ssing = —(cosp + Ssinp)
and
BA'=B1A=cosp + Ssing.
By taken BA~! = B~14 = Q, it can be written B = QA and A = BQ.
The geometric interpretation of the product QA4 in R3 can be given as rotating the line d,
(corresponding to A) by angle ¢ € R in positive direction about the line dg (corresponding to
S), and translating by magnitude ¢* € R along the line dg, see Fig. 1.
As a result he following two special cases can be given:
1. If ¢ # 0and ¢* = 0, then the operator Q = cosp + Ssin¢ describes a rotation.

2. If ¢* # 0 and ¢ = 0, then the operator Q = cosep + Ssinp =1+ £¢*S describes a
translation.
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Since a rotation about an axis and translation along the same axis describes a rigid-body
(screw) motion, every unit dual-quaternion Q = cosg + Ssing can be handled as a screw
operator.

T

b
da

) M
Figure 1. Geometry of the rigid-body (screw) motion where d4, dg and dg denotes the

lines corresponding to unit pure dual-quaternions 4, B and S, respectively.

Proposition 1. Let A be a unit pure dual-quaternion and Q = cos(¢/2) + Ssin(p/2) be a
unit dual-quaternion where ¢ /2 = (¢/2) + £(¢p*/2) € D. Then the product QAQ represents
a rotation of the line d4 (corresponding to A) by angle ¢ € R in positive direction about the
line dg (corresponding to S), afterwards a translation with magnitude ¢* € R along d.

3. (Anti)-Involution Matrices Of Dual Quaternions

In this section, two dual-quaternion matrices corresponding to dual-quaternion involution
transformations and another two dual-quaternion matrices corresponding to dual-quaternion
anti-involution transformations will be given. These matrices will be presented with their
geometrical meanings as reflections in D*, and the matrices corresponding to dual-quaternion
involution and anti-involution transformations’ vector parts will be given with their
geometrical meanings as rigid-body (screw) motions in R3.

A linear transformation f is an involution if it is self-inverse (i.e., f(f(x)) = x) and anti-
homomorphic (i.e., f(x1x2) = f(x;)f(x1)). Also, f is said to be anti-involution if it is self-
inverse and homomorphic (i.e., f(x;x;) = f(x1)f (x2)), see [8].

3.1. Involution Matrices of Dual Quaternions
Proposition 2. Let Q = A + 8B be an arbitrary dual-quaternion, then the transformation

fvillp > Hp; Q- fy(Q)=-VQV=A+V4VB
is an involution for a choosen unit pure dual-quaternion V, see [7].

The geometry of the product V&V in R3 can be given as: Let s =d + € (AAd)andV = b +

e (BAb ) where the points 4 and B are the closest points to each other on the lines ds and
dy, respectively. The line passing through the points A and B is the axis of the motion. By
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takens, = AB /| AB |, the direction of the translation of the motion is in the same direction
of the vector 54 with magnitude 2d = 2|AB|. Denote by M the plane that includes the line dy,
and is perpendicular to s, and denote by a; the unit orthogonal projection vector of @ on M.

Define 6 € R* as (a;, B) = cos#, then the rotation of the motion occurs by angle = — 26 €
R in negative direction in both cases if {a, b, So} is a right-handed set (i.e. 5o = a5 A b) and if
{E{, b, s_o’} is a left-handed set (i.e. s, = f)/\a_l’), see Fig. 2. Thus, V&V describes a rigid-body

(screw) motion in R3. It is important to emphasize that this motion can also be given as a
reflection of the line dg about the line dy.

Now, we will give two screw operator formulas corresponding to the product V8V, one if
{a;,b,55} is a right-handed set and one if {a;, b, 55} is a left-handed set.

1. If {@;, b,5,) is a right-handed set and if we take

Q = cos <<g — (—9)) + sd) + Ssin ((% — (—6)) + ed)

= (—sinf — &dcosO) + S(cosf — &dsind)
then
Q = (—sinB — edcosf) — S(cosO — &dsinh).

In this case, the operator Q&Q will rotate the line dg by angle = — 26 € R in negative
direction about the axis § and translate with magnitude 2d about the same axis S. The
translation is in the same direction with the axis vector §. Thus, we can give the equation
Q6Q =V4V.

If unit pure dual-quaternions & and V are parallel, then by taken

Q = cos (2 (g — (—9)) + 2£d> + S sin <2 <% — (—9)) + 2£d>

= cos((n +20) + 2£d) + S Sin((n +20) + 2£d),
we can give the equation Q6Q = V&V as Q6 = VéV.
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dVé'V:E‘}‘E(E/\E)

a
b dy:b+e(BAD)
\"‘\\\B /
/ 0
M : T
So

i ds: d+e(ANE)

/

ds = 5q+¢e(ANS])

Figure 2. Screw motion of the product V8V where the line dg, which corresponds to unit pure dual-
quaternion § = 5+ £(A A3y ), denotes the axis of the motion and | AB | =| BC | = d.

2. If {@;,b,54} is a left-handed set and if we take

Q= cos((g - 6) +£d> +Ssin<(% - 0) +£d>
= (sinf — &dcosO) + S(cosO + &dsinh),
then
Q = (sinf — edcosf) — S(cos6 + edsind).

In this case, the operator Q6Q will rotate the line dg by angle m — 26 € R in negative
direction about the axis § and translate with magnitude 2d about the same axis S. The
translation is in the same direction with the axis vector S. Thus, we can give the equation
Q6Q =V4V.

If unit pure dual-quaternions & and V are parallel, then by taken
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0= cos(Z(g ~ 0) +2ed) + Ssin(Z(% ~ 0) + 2¢d)
= cos(( m—20)+ 2£d) + Ssin(( m—20)+ 2£d),
we can give the equation Q6Q = V8V as Q8 = V4V.

Now, the matrix representation will be obtained corresponding to the involution
transformation f,,(Q) = —VQV for a choosen unit pure dual-quaternion V = Xi + Yj + Zk:

fr(1) =-V1V =1,
fy(@) =—-ViVv = (1 — 2X?)i — 2XYj — 2XZk,
fr() = =Vjv = —=2XYi+ (1 — 2Y?)j — 2YZk,
fy(k) = =VKV = =2XZi - 2YZj + (1 = 2Z%)k.
Thus, the matrix product of the involution transformation f;,(Q) = —VQV can be given as

1 0 0 0 A
0 1-2Xx% =2XY =2XZ||m
0 —2XY 1-2v% —=2vZ||m
0 —-2XZ =2YZ 1-27%11n;

where Q = A + 8B, 8B = (11,1m2,13), and the 4 x 1 matrix corresponds to Q while the 4 x 4
matrix corresponds to T. It can be easily checked that T is orthogonal, symmetric and
det(T) = —1 that means f,(Q) represents a reflection in D* . Another geometric
interpretation of the linear transformation f,(Q) can be given as: It leaves the scalar part A of
Q invariant, and in R3 it reflects the line d (corresponding to & = 8B /+/8B) about the line
dy (corresponding to V), and afterwards changes the direction of the line (obtained after the
reflection) oppositely.

TQ =

Corollary 1. LetQ = 6B =n,i+n,j + nsk be a pure and V = Xi + Yj + Zk be a choosen
unit pure dual-quaternions. Then, the matrix product

1-2X%? -—2XY —2XZ [T
—2XY 1-2Y%* =2YZ ([
—2XZ -2vZ 1-2z%1nm3

reflects the line dg (corresponding to & = 8B /v 8B) about the line dy (corresponding to V)
and afterwards changes the direction of the line (obtained after reflection) oppositely.

Example 1. Let

P=(1\/_§£)i+(1\7§£)j+%k, V=j

be dual-quaternions. The matrix product of the involution transformation f;,(Q) = —VPV can

be given as
1[1 0 O0J1-¢ 1[1—8]
—|0 -1 O||1l+eg|=—4=|-1-¢
V3lo o udl 1] V3L 1

that is fi,(Q) reflects the line corresponding to P about the line corresponding to V, and
afterwards changes its direction oppositely in R3. Furthermore, since § = —k and {P,V,S}is
a left-handed set, the product f,(Q) = —V PV can be given as a screw operator QPQ, where
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T T T T
Q= (sin— - ecos—) — k(cos— + £sin—)
4 4 4 4

V2. 2 V2 V2
=<7—£7)—k<7+£7>.

Proposition 3. Let Q = (a + u.b) + €(c + w,e) be an arbitrary dual-quaternion and
V = (Fu) + e(wd) be a choosen unit pure dual-quaternion and u L w . Then, the
transformation

fviHp - Hp; Q- fy(Q) =-V(Q)V =A4"+ V&'VB*
is an involution under the following two restrictions, see [3]:
(i) fV=+u thenQ = (a+ u.b) + &(c + w,e),
(i) IfQ = (a + uwb) + €(c + pwe) thenV = Fu + e(wd) where d # 0.

The matrix product of the involution transformation f,(Q) = —V(Q*)V can be given as

1 0 0 o 1.4
0 2x2-1 2xy 2xz |[(n)]
0 2XY 2¥2—1 2vZ ||(my»
0 2XZ 2YZ 272 -1 [@J

where (Q*) = A* — (6B)*, (6B)* = ((n,"), (12"), (n5*)), and the 4 x 1 matrix corresponds
to (Q*) while the 4 x 4 matrix corresponds to T. Since T is orthogonal, symmetric and
det(T) = —1, the linear transformation f,(Q) represents a reflection in D*. Another
geometric interpretation of the linear transformation f,(Q) can be given as: It reflects the
scalar part A of Q about the real-axis of dual-plane, and in R3 it reflects the line dg-

(corresponding to 6* = (6B)*/+/(8B)*) about the line dy (corresponding to V), and
afterwards changes the direction of the line (obtained after the reflection) oppositely.

T(Q") =

Corollary 2. LetQ = 6B =n,i+n,j +n3k be a pure and V = Xi + Yj + Zk be a choosen
unit pure dual-quaternions with the two restrictions given by Proposition 3. Then, the matrix
product

2x2—1  2xy  2xz [
2xy  2vt—-1 2vZ ||(m2)
2xz  2vz 222 -G

reflects the line dg (corresponding to &* = (6B)*//(6B)* ) about the line dy
(corresponding to V) and afterwards changes the direction of the line (obtained after
reflection) oppositely.

Example 2. Let

p (—1—8)_+<1—8)_+1k V=i
= l —_— —K, =
3 B/rEe
be dual-quaternions. The matrix product of the involution transformation f,,(Q) = —V(P*)V
can be given as
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-1+¢
-1—¢

1 [‘01 2 8”] !

— 1l =—

V3lo o -l -1 ] V3l 1
that is f,(Q) reflects the line corresponding to P* about the line corresponding to ¥ and

afterwards changes its direction oppositely in R3. Furthermore, since § = k and {P*, v, S} is

a left-handed set, the product f,(Q) = —V(P*)V can be given as a screw operator QP*Q,
where

T T T s
Q = (sin— — scos—) +k(cos— + £sin—)
4 4 4 4

V2. W2 V2 V2
=<7—£7>+k<7+87>.

3.2. Anti-Involution Matrices of Dual Quaternions

Proposition 4. Let Q = (a + p.b) + €(c + w,e) be an arbitrary dual-quaternion and
V =(Fu) + e(wd) be a choosen unit pure dual-quaternion for u L w . Then, the
transformation

frifip > Hp; Q- fy(Q) = -VQ*V = A" — V&VB*
is an anti-involution under the following two restrictions, see [7]:
(i) fV=+u thenQ = (a+ u,b) + (c + w,e),
@ii) If Q = (a £ pwb) + €(c + pwe) thenV = ¥u + e(wd) where d + 0.

The matrix product of the anti-involution transformation f;;(Q) = —VQ*V can be given as

1 0 0 0 A*
Tor=| 0 2X*-1  2Xy 2XZ [|m’
0 2XYy 2Y?2—1 2vZ |[|n”
0 2XZ 2YZ 277 —1llny*

where Q* = A* 4+ (8B)*, (6B)* = (115, n25n3™), V=Xi+Yj+ Zk, and the 4 X 1 matrix
corresponds to Q* while the 4 x 4 matrix corresponds to T. Since T is orthogonal, symmetric
and det(T) = +1, the linear transformation f,,(Q) represents a rotation in D*. Another
geometric interpretation of the linear transformation f,(Q) can be given as: It reflects the
scalar part A of Q about the real-axis of dual-plane, and in R3 it reflects the line dg

(corresponding to 6* = (6B)*/+/ (6B)*) about the line dy, (corresponding to V).

Corollary 3. LetQ = 6B =n,i +n,j +n3k be a pure and V = Xi + Yj + Zk be a choosen
unit pure dual-quaternions with the two restrictions given by Propositin 4. Then the matrix
product

2X2 -1 2XY 2X7 1|m”
2XY  2¥2—1  2vZ ||
2X7 2vZ 222 —1l|ns*
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reflects the line dg- (corresponding to 8* = (6B)*/+/(8B)* about the line dy, (corresponding
to V).

Example 3. Let

P=%i+(1\7;>j+<1\/_;)k, V=j

be dual-quaternions. The matrix product of the anti-involution transformation f,(Q) =
—V P’V can be given as
1[-1 0 O 1
Al 4 ol
that is f,(Q) reflects the line corresponding to P about the line corresponding to V.
Furthermore, since § = —i and {P*, V,S} is a right-handed set, the product f,(Q) =

—V(P™)V can be given as a screw operator —QP"Q, where
T T T T
Q = (—sin— — ecos—) —1i (cos— — ssin—)
4 4 4 4

_<_E_£E>_-<E_SV_§>_

2 2

Proposition 5. Let Q = A + 8B be an arbitrary dual-quaternion, then the transformation

frillp > Hp; Qv fy(Q)=-VQV=A-VéVB
is an anti-involution for a choosen unit pure dual-quaternion V, see [7].

The matrix product of the anti-involution transformation f,(Q) = —VQV can be given as

1 0 0 0 A
0 2X?—1 2XY 2xZ ||m
0 2XY 2v: -1 2vZ ||n
0 2XZ 2YZ 27Z% —111n;

where Q = A + 8B, 8B = (11,1m2,13), and the 4 x 1 matrix corresponds to Q while the 4 x 4
matrix corresponds to T. It can be easily checked that T is orthogonal, symmetric and
det(T) = +1 that means f, (Q) represents a rotation in D*. Also, the geometry of the linear
transformation f;,(Q) can be given in R3 as: It leaves the scalar part A of Q invariant, and in
RR3 it reflects the line dg (corresponding to & = 6B /v/8B) about the line dy, (corresponding to
V).

TQ =

Corollary 4. LetQ = 6B =n,i+n,j + nsk be a pure and V = Xi + Yj + Zk be a choosen
unit pure dual-quaternions. Then, the matrix product

2X2 -1 2XY 2XZ M
2XY 2Y% —1 2YZ N2
2X7Z 2YZ 2z% —111ns

reflects the line dg (corresponding to & = 8B /v 8B) about the line dy (corresponding to V).
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Example 4. Let

P=<1\/_;)i+(1\7;)j+%k, V=j

be dual-quaternions. The matrix product of the involution transformation f,(Q) = —VPV can

be given as
1[—1 0 0”1—s 1 [-1+¢
—|0 1 O0||1+el=—7=|1+¢
V3 0 0 —-11L 1 V3 -1

that is fy(Q) reflects the line corresponding to P about the line corresponding to V.
Furthermore, since § = —k and {P,V, S} is a left-handed set, the product f,(Q) = —VPV can
be given as a screw operator —QPQ, where

T /s Vs T
Q = (sinz - ecos—) — k(cos— + £sin—)

4 4 4
V2. W2 V2 V2
=<7—£7>—k<7+87>.

4. Conclusion

The matrices of the dual-quaternion involution transformations £, (Q) = —VQV and £, (Q) =
—V(Q*)V represent reflections in D*, however they represent reflections in R3. Also, the
matrices of the anti-involution transformations f,(Q) =—-VQ*V and fy,(Q) = -VQV
represent rotations in D*, however they represent reflection in R3.
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