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Abstract

This article aims to express the daily and yearly apparent movement of the Sun in the same
curve by using quaternions as a rotation operator. To achieve this, the daily and yearly
apparent movement of the Sun, the algebraical structure of quaternions, and how quaternions
work as rotation operators have been examined. For each of the apparent movements of
the Sun, a quaternion that will work as a rotation operator has been determined. Afterward,
these two rotation operators have been applied to the vector that is found between point
(0,0,0) and the accepted starting point of the apparent movement of the Sun. As a result,
a curve on a sphere is obtained. The importance of this study is to emphasize the use of
quaternions in other areas of study and to provide the science of astronomy with a new
outlook with regards to expressing the apparent movement of the Sun.

1. Introduction

Astronomy is considered the oldest science in the world. Humankind has always observed the stars in the sky and especially the Sun. At the
end of these observations, it was noticed that the daily and yearly movement of the Sun followed a certain cycle. By observing the Sun’s
movement in the sky the formation of the night-day and the seasons was noted.
For thousands of years, mankind accepted that Earth was the center of the universe and believed that the Sun, like all other celestial bodies
rotated around the Earth. However, Copernicus proved that this belief was not accurate because it was the Earth that rotated around the
Sun [1]. After this discovery, the expression of “the Sun’s movement” was replaced with the expression of “the Sun’s apparent movement”.
Even though the daily and yearly apparent movement of the Sun occurs at the same time, in calculation these movements are considered
separable. The two main reasons for why these movements are considered separable are: firstly, the dyad Earth-Sun is not alone in the solar
system which means that the problem does not remain limited to the two-body problem. Secondly, the difference between the periods of the
daily and yearly movement is too big.
Showing the daily and yearly apparent movement of the Sun in the same curve is important in helping understand these movements, especially
for young astronomers. At the same time, there exist situations in which great precision is not required but where nonetheless finding
these two movements in the same curve would be useful. In many areas, such as using solar panels, planning agricultural activities, and in
determining prayer time, doing the calculation of this curve would bring many benefits.
In our time astronomy problems that have in their base periodical repetition of the movement find a solution by using spherical trigonometry
and Kepler’s Laws [2]. Solving this problem by using the rotation matrix is theoretically possible from the mathematical perspective,
however, using this method is considerably difficult. Therefore, the question arises, is it possible to obtain a faster mathematical approach to
calculate the apparent movement of the Sun that would take the place of the rotation matrices or the long calculations of Kepler’s equations?
There are some studies done in this direction in the relevant literature. In 1996, M. Kummer proved that one can obtain the orbit’s parameters
by solving Kepler’s equations with the Hamilton systems [3]. This study, on the other hand, has researched whether there can be easier
and faster solutions done by using quaternions and the conclusion has been that quaternions can indeed be used in analyzing the apparent
movement of the Sun.
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To understand and present the problem the author has benefited from the references [1]- [3] and [5] - [15]. The details about the quaternions
can be viewed from the references [4] and [16] - [22]. The information needed for the other calculations is found in the references [23] - [24].

2. Notations and Preliminaries

2.1. Quaternion algebra

The quaternion, a hyper-complex number of rank 4, was invented by Hamilton. The most important rule of this invention is:

i2 = j2 = k2 = i jk =−1

i, j and k are the components of the vector part of the quaternion.
Henceforth the quaternions will be denoted with the letters q, p or r. i, j and k will be used to represent the standard ortogonal base of R3.
Accordingly:

i = (1,0,0) , j = (0,1,0) , k = (0,0,1)

The quaternion, from the Latin kuattur meaning four, can be thought of as a quadruplet of the real numbers. This makes it an element of R4.
Accordingly, quaternion q can be expressed as below where q0,q1,q2,q3 are each a real number

q = (q0,q1,q2,q3)

or the quaternion q is accordingly:

α = iq1 + jq2 + kq3

q = q0 +α = q0 + iq1 + jq2 + kq3

where q0 is the scalar part and α is the vector part. Throughout the article, q will be displayed with q = q0 +α .
Some algebraic properties of the quaternions are given as follows:

q+ p = (q0 + p0)+ i(q1 + p1)+ j(q2 + p2)+ k(q3 + p3)

aq = aq0 + iaq1 + jaq2 + kaq3 , a ∈ R
Multiplication of quaternions is done according to the following rule

i2 = j2 = k2 = i jk =−1 and i j = k =−i j, jk = i =−k j,ki = j =−i j

for p = p0 +αp = p0 + ip1 + jp2 + kp3 and q = q0 +αq = q0 + iq1 + jq2 + kq3

p × q = (p0 + ip1 + jp2 + kp3) × (q0 + iq1 + jq2 + kp3)

= p0q0− (p1q1 + p2q2 + p3q3)+ p0(iq1 + jq2 + kq3)+q0(p0 + ip1 + jp2 + kp3)

+ i(p2q3− p3q2)+ j (p3q1− p1q3)+ k (p1q2− p2q1)

= p0q0−
〈
αp,αq

〉
+ p0αq +q0αp +αp∧αq

“〈 , 〉” represents the scalar product of vectors and “∧” represents the cross-produc of vectors.
Let q be a quaternion q = q0 + iq1 + jq2 + kq3 then q’s complex conjugent is:

q∗ = q0− iq1− jq2− kq3

Finally, we can state that the set of quaternions together with the addition and multiplication operation satisfies the properties of a field
except that multiplication is not commutative. Before quaternions are expressed as a rotation operator the definition of pure quaternions will
be given.

Definition 2.1. The quaternion whose scalar part is zero is called a pure quaternion.

According to the definition above, the set of pure quaternions is one-to-one correspondent with the v ∈R3 vector set. It can be shown that for
any v ∈ R3 and for whichever q ∈ R4, there can be found w1 = q × v × q∗ vector w1 ∈ R3 and w2 = q∗ × v × q vector w2 ∈ R3.
The unit quaternion q = q0 +α satisfies the following equality q2

0 + |α|
2 = 1. It is known that for whichever ϕ angle cos2ϕ + sin2

ϕ = 1. In
this case, a ϕ angle which would make possible the equations below can be found:

cos2
ϕ = q2

0 and sin2
ϕ = |α|2.

If we select the ϕ angle in −π < ϕ ≤ π , this angle will simultaneously have a singular value. In light of this data, the quaternion that will be
used as a rotation operator is:

q = q0 +α = cosϕ +usinϕ and q∗ = q0−α = cosϕ−usinϕ

where

u =
α

|α|
=

α

sinϕ
.
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Theorem 2.2. For any Q = Q0 +Q = cosϕ +usinϕ unit quaternion (where Q0 is the scalar part and Q is the vector part of the quaternion)
and for any vector v ∈ R3 the action of the operator

LQ(v) = Q × v × Q∗

on v may be interpreted geometrically as a rotation of the vector v through an angle 2ϕ about Q as the axis of the rotation, [4].

In addition: the action of the operator LQ(v) = Q∗× v × Q on v may be interpreted geometrically as a rotation of the vector v through an
angle 2ϕ in a negative direction about Q as the axis of the rotation.

Theorem 2.3. Suppose that k and r are unit quaternions that define the quaternion rotation operators:

Lk(u) = k × u × k∗ and Lr(v) = r × v× r∗.

Then the quaternion product r× k defines a quaternion operator Lrk which represents a sequence of operators, Lk followed by Lr. The axis
and the angels of rotation are those represented by the quaternion product, q = r × k [4].

In this study, two methods will be used to solve the problem. The first method will benefit from the characteristic of quaternions used as
rotation operators. The second method will use the rotation matrix, which is a product of the unit quaternion. This matrix is as below:
for Q = q0 + iq1 + jq2 + kq3 unit quaternion, the rotation matrix DQ is shown below [4].

DQ =

 2q2
0−1+2q2

1 2q1q2−2q0q3 2q1q3 +2q0q2
2q1q2 +2q0q3 2q2

0−1+2q2
2 2q2q3−2q0q1

2q1q3−2q0q2 2q2q3 +2q0q1 2q2
0−1+2q2

3

 (2.1)

and let β = (β1,β2,β3) be the vector that is obtained by the rotation of vector α = (α1,α2,α3) then:

β1
β2
β3

=

 2q2
0−1+2q2

1 2q1q2−2q0q3 2q1q3 +2q0q2
2q1q2 +2q0q3 2q2

0−1+2q2
2 2q2q3−2q0q1

2q1q3−2q0q2 2q2q3 +2q0q1 2q2
0−1+2q2

3

α1
α2
α3

 . (2.2)

2.2. The Sun’s daily and yearly apparent movement

2.2.1. The Sun’s daily apparent movement

The Earth rotates around its axis in a positive direction every day, so from the west to the east. Because the movement of the Earth cannot
be felt, it is perceived instead that it’s the other celestial bodies that rotate from the east to the west around the axis of the celestial sphere
which in itself is the lengthening of the axis of the Earth. Among these celestial bodies, there is the Sun. So it can be said that the Sun in
appearance moves every day in the negative direction in the celestial sphere. This movement occurs with a particular velocity in an orbit
parallel to the celestial equator plane. The celestial equator plane is the lengthening of the Earth’s equator plane [5].

2.2.2. The Sun’s yearly apparent movement

The Earth orbits around the Sun in an elliptical orbit and a positive direction, in the elliptical plane throughout the year. However, in
appearance, it is the Sun that orbits around the Earth in the same plane and a positive direction. The angle between the elliptical plane and
the equatorial plane is 23027′. This plane forms a 23027′ angle with the plane of the celestial equator. If in the center of the celestial system
instead of the Sun we placed the Earth and then drew the apparent elliptical orbit of the Sun,the orbit in Figure 2.1 would be obtained. To
obtain this orbit the Earth will be imagined as fixed and the Sun as the body that rotates around it. Because the Earth’s orbit is well-known
the Earth will be fixed in what will be called point A henceforth which is found in its orbit. When the Earth is on day 21 March at the Y1
point the Sun appears in the direction of Aries. If we transfer point Y1 to point A and find point G1 for which AG1 = Y1G and AG1 is parallel
to Y1G, it would mean that the Sun would appear at point G1 at this date. In the same manner, if P1G to AP2, Y2G to AG2, Y3G to AG3, and
Y4G to AG4 are transferred a new ellipse is formed which has at its center point A. This is the Sun’s yearly apparent elliptical orbit. Every
year the Sun moves in this elliptical orbit. Below are five important points that concern this orbit [5].

1. Both orbits are found in the same plane and this plane is the elliptical plane.
2. The Earth is found in one of the focal points of the apparent elliptic orbit.
3. These two ellipses are equal in shape and size.
4. The rotation period is the same in both and it is a one-star year long.
5. Both rotations are in the positive direction.
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Figure 2.1: The Earth’s orbit and the Sun’s apparent orbit

3. Obtaining the Parametric Equation of the Curve of Both the Daily and Yearly Apparent Move-
ment the Sun Makes in the Celestial Sphere by Using Quaternions

In this paper, it is assumed the apparent movement of the Sun occurs in ideal conditions. This means that the Earth will rotate around the Sun
with a constant angular velocity (this velocity will be accepted as equal to the yearly average angular velocity of the Earth around the Sun)
and it will be accepted that the orbit of rotation will be circular instead of elliptic. So, it will be accepted that the apparent movement of the
Sun in the ecliptic plane will occur in a circular orbit with a constant angular velocity.
Firstly, it is necessary to define the problem in physical terms.
Let us accept that a celestial body completes a circular motion in plane E that intersects with plane XY in axis x and forms with it an ε

angle. Let us also accept that this movement starts from point P = (1,0,0) in a positive direction, and under force, F1 completes a circular
movement with a constant angular velocity w1. Lastly, let us also accept that a force F2 = c F1, c > 2 (there is a linear relationship between
the scalar magnitude of the forces), forces the same celestial body to move parallel to plane XY in a positive direction with a constant angular
velocity w2. In this case, the celestial body whose vectors are linear independent is under the effect of two forces and is bound to both
velocities. This body, however, will not move parallel to either plane XY or plane E instead it will move with the unified velocity in a
different direction. How can we express the celestial body’s interaction with the velocities w1 and w2?
Between the scalar magnitudes of w1 and w2 velocities, a linear relation is found. This linear relation will be the same as the linear relation
between the scalar magnitudes of F1 and F2. In the same manner, the θ and ϕ angles these angular velocities trace in the same unit of time
will also have the same linear relationship between their magnitudes. So ϕ = cθ because the forces are directly proportional to the angular
velocities and the angular velocities are directly proportional to the angles they trace. To conclude, the curve that this celestial body traces on
the sphere is a product of two rotations. One of the rotations will be in a positive direction around the axis of the plane E (let this axis be
called N) and the other will be in a positive direction around axis Z.
Let plane E represent the elliptic plane while plane XY represents the plane of the celestial equator and angle ε represents the angle
ε = 23027′ which is the angle that is formed from the intersection of the celestial equatorial plane and the ecliptic plane (Figure 3.1). In this
case, point (0,0,0) represents the Earth. In addition, the positive direction of axis X will represent the Aries constellation. The direction of
the vector (0,−cosε,−sinε) will represent the Capricorn constellation. The direction of the vector (0,cosε,sinε) will represent the Cancer
constellation. The negative direction of axis X will represent the Libra constellation.
Now let us show the daily apparent movement of the Sun. This movement occurs in a negative direction parallel to the celestial equatorial
plane. In this case, the second rotation movement in the negative direction of the celestial body that was presented in the problem above
represents the movement of the daily apparent movement of the Sun.
Finally, above, it was stated that between the scalar magnitudes of w1 (if we adapt w1 to the velocity of the Sun this corresponds with the
velocity of the Sun’s movement in the elliptical plane) and w2 (if we adapt w2 to the velocity of the Sun this corresponds with the velocity of
the movement the Sun makes parallel to the celestial equatorial plane) exists a linear relation. The same linear relation exists between the
angles these velocities trace. In this case; because w2 = 365,25w1 (when the Sun rotates once around the ecliptic axis it rotates 365,25
times parallel to the celestial equatorial plane) ϕ = 365,25θ . So, c = 365,25.
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Figure 3.1: The system in which the apparent movement of the Sun occurs

Let Q1 be the quaternion that will realize the movement in the positive direction around axis N. Let Q2 be the quaternion that will realize the
movement in the positive direction around axis Z. With the help of these two quaternions, the parametric equation of the curve of the daily
and yearly apparent movement the Sun makes in the celestial sphere will be obtained. The starting point of the movement is P = (1,0,0)
which coincides with the Aries constellation. The vector OP that is found in the direction of the Earth-Aries constellation is v = (1,0,0) .
First, let this vector be transferred to the quaternion space so:
v1 = (1,0,0) vector→ w1 = 0+ i+0 j+0k = i corresponds to a pure quaternion. The first rotation movement will be realized around axis
u =− j sinε + k cosε with θ angle. The second rotation movement will be realized around axis k with a ϕ angle in a negative direction. In
this case, the Q1 and Q2 quaternions that will operate as rotation operators are: For a = sinε and b = cosε ,

Q1 = cos
(

θ

2

)
− j asin

(
θ

2

)
+ k bsin

(
θ

2

)
and

Q2 = cos
(

ϕ

2

)
+ k sin

(
ϕ

2

)
.

It is stated that the second rotation movement (daily movement) occurs around axis k in the negative direction. If the necessary adjustments
are made, instead of Q2 = cos

(
ϕ

2
)
+ k sin

(
ϕ

2
)

for the second rotation, the complex conjugate of Q2 will be used.

Q∗2 = cos
(

ϕ

2

)
− k sin

(
ϕ

2

)
.

According to Theorem 2.3, for LQ1 (w1) = Q1× w1 × Q∗1 , LQ∗2(w2) = Q∗2× w2 × Q2 , and w2 = Q1 × w1 × Q∗1

LQ∗2Q1 (w1) = (Q∗2 × Q1)× w1 × (Q∗2 × Q1)
∗.

If Q∗2 × Q1 = Q and w1 = i then

LQ∗2Q1 (w1) = Q × i × Q∗.

So the calculations are as such:

Q = Q2
∗× Q1 =

(
cos
(

ϕ

2

)
− k sin

(
ϕ

2

))
×
(

cos
(

θ

2

)
− j asin

(
θ

2

)
+ k bsin

(
θ

2

))

Q =

(
cos
(

ϕ

2

)
cos
(

θ

2

)
+b sin

(
ϕ

2

)
sin
(

θ

2

))
− ia sin

(
ϕ

2

)
sin
(

θ

2

)
− j a cos

(
ϕ

2

)
sin
(

θ

2

)
+ k
(

b cos
(

ϕ

2

)
sin
(

θ

2

)
− sin

(
ϕ

2

)
cos
(

θ

2

))

L = Q × i × Q∗ = L0 + iL1 + j L2 + k L3

L0 = 0
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L1 =

(
cos
(

ϕ

2

)
cos
(

θ

2

)
+b sin

(
ϕ

2

)
sin
(

θ

2

))2
+a2sin2

(
ϕ

2

)
sin2

(
θ

2

)
−a2cos2

(
ϕ

2

)
sin2

(
θ

2

)
−
(

b cos
(

ϕ

2

)
sin
(

θ

2

)
− sin

(
ϕ

2

)
cos
(

θ

2

))2

= cos2
(

ϕ

2

)
cos2

(
θ

2

)
+2b cos

(
ϕ

2

)
cos
(

θ

2

)
sin
(

ϕ

2

)
sin
(

θ

2

)
+b2sin2

(
ϕ

2

)
sin2

(
θ

2

)
−a2 sin2

(
θ

2

)(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
−b2cos2

(
ϕ

2

)
sin2

(
θ

2

)
+2bcos

(
ϕ

2

)
sin
(

θ

2

)
sin
(

ϕ

2

)
cos
(

θ

2

)
− sin2

(
ϕ

2

)
cos2

(
θ

2

)
= cos2

(
θ

2

)(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
−b2sin2

(
θ

2

)(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
−a2sin2

(
θ

2

)(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
+
(

2b cos
(

ϕ

2

)
sin
(

ϕ

2

))(
2bcos

(
θ

2

)
sin
(

θ

2

))
= cos2

(
θ

2

)(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
− sin2

(
θ

2

)(
a2 +b2

)(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
+
(

2b cos
(

ϕ

2

)
sin
(

ϕ

2

))(
2b cos

(
θ

2

)
sin
(

θ

2

))
=

(
cos2

(
θ

2

)
− sin2

(
θ

2

))(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
+

(
2b cos

(
θ

2

)
sin
(

θ

2

))(
2b cos

(
ϕ

2

)
sin
(

ϕ

2

))

L1 = cosϕ cosθ +b sinϕ sinθ .

Likewise:

L2 = b cosϕ sinθ − sinϕ cosθ

L3 = a sinθ

then

LQ2
∗Q1

(w1) = Q × i ×Q∗ = i(cosϕ cosθ +b sinϕ sinθ)+ j (bcosϕ sinθ − sinϕ cosθ)

+ k a sinθ = w.

When vector w that was obtained in the quaternion space is transferred to vector v in the real space:

v = (x,y,z) = (cosϕ cosθ +bsinϕ sinθ , bcosϕ sinθ − sinϕ cosθ , asinθ) .

If c > 2, 0≤ θ ≤ 2π, 0≤ ϕ ≤ nπ , n and c are constants and ϕ = cθ are kept in mind then:

X = cosθ cos(cθ)+bsinθ sin(cθ)

Y = bsinθ cos(cθ)− cosθ sin(cθ)

Z = asinθ

c = 365,25 and 0≤ θ ≤ 2π, a = sin23027′ and b = cos23027′.

The quaternion that will be used for the first rotation movement, was defined before as:
Q1 = cos

(
θ

2

)
− jasin

(
θ

2

)
+ k bsin

(
θ

2

)
. From here, we have:

q10 = cos
(

θ

2

)
q11 = 0

q12 =−asin
(

θ

2

)
q13 = bsin

(
θ

2

)
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According to (2.1) rotation matrix A which is produced by the unit quaternion above is:

A =


2cos2

(
θ

2

)
−1 −2bcos

(
θ

2

)
sin
(

θ

2

)
−2acos

(
θ

2

)
sin
(

θ

2

)
2bcos

(
θ

2

)
sin
(

θ

2

)
2cos2

(
θ

2

)
−1+2

(
−asin

(
θ

2

))2
−2absin

(
θ

2

)
sin
(

θ

2

)
2cos

(
θ

2

)
asin

(
θ

2

)
−2absin

(
θ

2

)
sin
(

θ

2

)
2cos2

(
θ

2

)
−1+2

(
bsin

(
θ

2

))2

 .
The quaternion that will be used for the second rotation movement, was defined before as:
Q2
∗ = cos

(
ϕ

2
)
− k sin

(
ϕ

2
)

From here:

q20
∗ = cos

(
ϕ

2

)
q21
∗ = 0

q22
∗ = 0

q23
∗ =−sin

(
ϕ

2

)

According to (2.1) rotation matrix B which is produced by the unit quaternion above is:

B =

 2cos2 (ϕ

2
)
−1 2cos

(
ϕ

2
)

sin
(

ϕ

2
)

0
−2cos

(
ϕ

2
)

sin
(

ϕ

2
)

2cos2 (ϕ

2
)
−1 0

0 0 1


Let matrix be the resultant matrix of matrixes and then:

C = BA

When the necessary calculations are done:

C =

 2q2
0−1+2q2

1 2q1q2−2q0q3 2q1q3 +2q0q2
2q1q2 +2q0q3 2q2

0−1+2q2
2 2q2q3−2q0q1

2q1q3−2q0q2 2q2q3 +2q0q1 2q2
0−1+2q2

3


where

q0 = cos
(

ϕ

2

)
cos
(

θ

2

)
+b sin

(
ϕ

2

)
sin
(

θ

2

)
q1 =−a sin

(
ϕ

2

)
sin
(

θ

2

)
(3.1)

q2 =−a cos
(

ϕ

2

)
sin
(

θ

2

)
q3 = b cos

(
ϕ

2

)
sin
(

θ

2

)
− sin

(
ϕ

2

)
cos
(

θ

2

)

As expected, the values in equation (3.1) are the same as the values of Q = Q2
∗×Q1.

According to (2.2), the vector w = (w1,w2,w3) obtained when rotation matrix C is applied in vector~v = (1,0,0) is:

w =C~v

w(w1,w2,w3) =

w1
w2
w3

=

 2q2
0−1+2q2

1 2q1q2−2q0q3 2q1q3 +2q0q2
2q1q2 +2q0q3 2q2

0−1+2q2
2 2q2q3−2q0q1

2q1q3−2q0q2 2q2q3 +2q0q1 2q2
0−1+2q2

3

1
0
0



w1 = 2q2
0−1+2q2

1 = 2
(

cos
(

ϕ

2

)
cos
(

θ

2

)
+b sin

(
ϕ

2

)
sin
(

θ

2

))2
−1+2

(
−a sin

(
ϕ

2

)
sin
(

θ

2

))2

w1 = cosϕ cosθ +bsinϕ sinθ
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w2 = (2q1q2 +2q0q3)

= 2
(
−asin

(
ϕ

2

)
sin
(

θ

2

))(
−a cos

(
ϕ

2

)
sin
(

θ

2

))
+2
(

cos
(

ϕ

2

)
cos
(

θ

2

)
+bsin

(
ϕ

2

)
sin
(

θ

2

))(
bcos

(
ϕ

2

)
sin
(

θ

2

)
− sin

(
ϕ

2

)
cos
(

θ

2

))

w2 = bcosϕ sinθ − sinϕ cosθ

w3 = 2
(
−asin

(
ϕ

2

)
sin
(

θ

2

))(
b cos

(
ϕ

2

)
sin
(

θ

2

)
− sin

(
ϕ

2

)
cos
(

θ

2

))
−2
(

cos
(

ϕ

2

)
cos
(

θ

2

)
+bsin

(
ϕ

2

)
sin
(

θ

2

))(
−acos

(
ϕ

2

)
sin
(

θ

2

))
= 2acos

(
θ

2

)
sin
(

θ

2

)

w3 = asinθ

w = (w1,w2,w3) = (cosϕ cosθ +bsinϕ sinθ , bcosϕ sinθ − sinϕ cosθ , a sinθ) .

If c > 2, 0≤ θ ≤ 2π, 0≤ ϕ ≤ nπ, n and c constants and ϕ = cθ , are kept in mind then:

w1 = X = cosθ cos(cθ)+bsinθ sin(cθ)

w2 = Y = bsinθ cos(cθ)− cosθ sin(cθ) (3.2)

w3 = Z = asinθ

c = 365,25 and 0≤ θ ≤ 2π, a = sin23027′ and b = cos23027′

If the graphic of the equation (3.2) we obtained above was drawn, the three-dimensional graphic shown in Figure 3.2 will be acquired. This
curve covers the entirety of the sphere found between the planes z =−sin23027′ and z = sin23027′ because the constant c is c = 365,25.
For this reason, to be able to comprehend the shape of the curve, c = 12 is chosen instead of c = 365,25 and this way the graphic shown in
Figure 3.3 is obtained. As shown in Figure 3.3, the curve is a spherical spiral limited between the planes z =−sin23027′ and z = sin23027′.
If in equation (3.2) ε = 900 then the parametric equation of the spherical spiral is procured.

Figure 3.2: The curve of the apparent movement of the Sun for c = 365,25
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Figure 3.3: The curve of the apparent movement of the Sun for c = 12
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