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Abstract
In this paper, we give the definition of the concept of unit hyper-dual sphere. We take a
subset of this sphere and show that each curve on this subset represents two ruled surfaces
in three dimensional real vector space such that these ruled surfaces have a common base
curve and their rulings are perpendicular. Finally, we give some examples to illustrate the
applications of our main results.
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1. Introduction
Clifford introduced the algebra of dual numbers D as an extension of real numbers R

[2]. A dual vector is an ordered triple of dual numbers, and the set of all dual vectors is
denoted by D3. Dual vectors were first applied in mechanism by Study [19] and Kotelnikov
[11]. There exists a one-to-one correspondence (known as E. Study mapping) between the
directed lines in 3-dimensional real vector space R3 and the points of unit dual sphere S2

D
(the set of all unit dual vectors).

The algebra of hyper-dual numbers D̃ was first defined by Fike to overcome some de-
rivative problems in the complex-step derivative approximation [6, 7]. Afterwards, this
number system is used in derivative calculations [6–9]. Cohen and Shoham showed that a
hyper-dual number consists of two dual numbers [3]. Futhermore, they interpreted hyper-
dual numbers in the sense of Study [19] and Kotelnikov [11], and they used this number
system in the motion of multi-body systems [3–5]. Hyper-dual numbers are suitable for
software, analysis and design of airspace systems, and robot manipulators [4, 7].

A ruled surface is described as a surface swept out by a straight line moving along a
curve [15]. The parametric representation of a ruled surface consists of two curves in R3

similar to a curve on unit dual sphere S2
D. Hence, there exists a one-to-one correspendence

between the dual curves on S2
D and the ruled surfaces in R3 [20]. Veldkamp gave the
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applications of the dual curves on S2
D to theoretical space kinematic [20]. Afterwards,

these curves have been used in motion of the robot end-effector [14, 17], in kinematic
formulations of the lines trajectories [12, 13] and in kinematic generations of the ruled
surfaces [18].

In this paper, we give some basic concepts of hyper-dual numbers. We define unit
hyper-dual sphere S2

D̃. Using E. Study mapping, we show that there exists a one-to-one
correspondence between the points of S2

D̃1
(which is a subset of unit hyper-dual sphere

S2
D̃) and any two intersecting perpendicular directed lines in R3. We give the definition

of hyper-dual curves on S2
D̃. By interpreting these curves in the sense of Veldkamp [20],

we show that each hyper-dual curve on S2
D̃1

represents two ruled surfaces in R3. It is ob-
served that these ruled surfaces intersect along a common base curve and their rulings are
perpendicular. It is also observed that each dual curve on unit dual sphere S2

D represents
a ruled surface in R3 while each hyper-dual curve on S2

D̃1
represents two ruled surfaces in

R3 such that these two ruled surfaces intersect along a common base curve. Examples of
ruled surfaces are given to illustrate the applications of our results.

2. Preliminaries
In this section, definitions and some algebraic properties of the concepts of dual numbers

and hyper-dual numbers will be given to provide a background.

2.1. Dual numbers
The set of all dual numbers is defined as

D = {A = a + εa∗ : a, a∗ ∈ R} , (2.1)

where ε is the dual unit satisfying

ε ̸= 0, ε2 = 0 and rε = εr for all r ∈ R. (2.2)

The square root of a dual number A = a + εa∗ is defined as
√

A =
√

a + ε
a∗

2
√

a
, for a > 0. (2.3)

Taylor series expansion of a dual function f(x+εx∗) about a point x+εx∗ = a+εa∗ ∈ D
can be given as

f(a + εa∗) = f(a) + εa∗f ′(a), (2.4)
where the prime represents differentiation with respect to x [20], i.e.

f ′ (x) = d

dx
f(x). (2.5)

The set of dual vectors is defined by

D3 =
{

Â = a + εa∗ : a, a∗ ∈ R3
}

(2.6)

and each element Â of D3 is called a dual vector.
The scalar and vector products of any dual vectors Â = a + εa∗ and B̂ = b + εb∗ are

defined by ⟨
Â, B̂

⟩
D

= ⟨a, b⟩ + ε (⟨a, b∗⟩ + ⟨a∗, b⟩) , (2.7)

Â ×D B̂ = a × b + ε (a × b∗ + a∗ × b) , (2.8)

where “⟨, ⟩” and “×” denote, respectively, the usual scalar and vector products in 3-
dimensional real vector space R3.
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The modulus of the dual vector Â = a + εa∗ is defined to be∣∣∣Â∣∣∣
D

=
√⟨

Â, Â
⟩

D
= |a| + ε

⟨a, a∗⟩
|a|

, for |a| ̸= 0. (2.9)

If
∣∣∣Â∣∣∣

D
= 1 (i.e., |a| = 1 and ⟨a, a∗⟩ = 0), then Â = a + εa∗ is called a unit dual vector.

Unit dual sphere S2
D, consisting of all unit dual vectors, is defined by

S2
D =

{
Â = a + εa∗ :

∣∣∣Â∣∣∣
D

= 1, Â ∈ D3
}

. (2.10)

Theorem 2.1. [E. Study Mapping] Each point on unit dual sphere S2
D represents a directed

line in R3. In other words, there is a one-to-one correspondence between the points of unit
dual sphere S2

D and the directed lines in R3 [19].

The scalar product of any unit dual vectors Â = a + εa∗ and B̂ = b + εb∗ is⟨
Â, B̂

⟩
D

= cos φ = cos θ − εθ∗ sin θ, (2.11)

where φ = θ + εθ∗ is a dual angle [19]. If d1 and d2 are the directed lines in R3 corre-
sponding, respectively, to the unit dual vectors Â and B̂, then θ is the angle between the
real vectors a and b, and |θ∗| is the shortest distance between d1 and d2, see Fig. 1.

Figure 1. Geometric representation of dual angle φ ∈ R3

The vector product of any unit dual vectors Â = a + εa∗ and B̂ = b + εb∗ is

Â ×D B̂ = N̂ sin φ, (2.12)

where the Taylor series expansion of sin φ is sin φ = sin θ + εθ∗ cos θ and where N̂ =
Â×DB̂

|Â×DB̂|
D

is the common perpendicular direction vector to the dual vectors Â and B̂,
directed from a to b. For further information about dual numbers, see [1, 2, 5, 20].

2.2. Hyper-dual numbers
The set of all hyper-dual numbers is defined as

D̃ = {A = a0 + ε1a1 + ε2a2 + ε1ε2a3 : a0, a1, a2, a3 ∈ R} , (2.13)
where the dual units ε1 and ε2 satisfy

ε2
1 = ε2

2 = (ε1ε2)2 = 0 and ε1 ̸= ε2, ε1 ̸= 0, ε2 ̸= 0, ε1ε2 = ε2ε1 ̸= 0. (2.14)

The algebra of D̃ can be embedded in the real exterior algebra ∧V where V is a real
vector space with an orthogonal basis e1, e2, e3, e4, as follows: let ε1 = e1 ∧ e2 and
ε2 = e3 ∧ e4. Then, one can recover the algebra of the D̃ as this 4-dimensional subalgebra
of the exterior algebra ∧V that is spanned by {1, ε1, ε2, ε1ε2}.

Addition and multiplication of any hyper-dual numbers A = a0 + ε1a1 + ε2a2 + ε1ε2a3
and B = b0 + ε1b1 + ε2b2 + ε1ε2b3 are defined, respectively, as

A + B = (a0 + b0) + ε1 (a1 + b1) + ε2 (a2 + b2) + ε1ε2 (a3 + b3) , (2.15)
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AB = (a0b0) + ε1 (a0b1 + a1b0) + ε2 (a0b2 + a2b0)
+ ε1ε2 (a0b3 + a1b2 + a2b1 + a3b0) . (2.16)

The multiplicative-inverse of a hyper-dual number A = a0 + ε1a1 + ε2a2 + ε1ε2a3 is

A−1 = 1
A

= 1
a0

− ε1
a1
a2

0
− ε2

a2
a2

0
+ ε1ε2

(
−a3

a2
0

+ 2a1a2
a3

0

)
, if a0 ̸= 0. (2.17)

Thus, a hyper-dual number in the form A = 0+ε1a1 +ε2a2 +ε1ε2a3 = ε1a1 +ε2a2 +ε1ε2a3
does not have an inverse.

Taylor series expansion of a hyper-dual function f(x0 + ε1x1 + ε2x2 + ε1ε2x3) about a
point x0 + ε1x1 + ε2x2 + ε1ε2x3 = a0 + ε1a1 + ε2a2 + ε1ε2a3 ∈ D̃ can be given as

f(a0 + ε1a1 + ε2a2 + ε1ε2a3) = f(a0) + ε1a1f ′(a0) + ε2a2f ′(a0)
+ ε1ε2(a3f ′(a0) + a1a2f ′′(a0)), (2.18)

where the prime represents differentiation with respect to x0, i.e.

f ′ (x0) = d

dx0
f(x0), (2.19)

see [6–9].
A hyper-dual number A = a0 + ε1a1 + ε2a2 + ε1ε2a3 can be given in terms of two dual

numbers as
A = A + ε∗A

∗ , (2.20)
where ε1 = ε, ε2 = ε∗ and A = a0 + εa1, A

∗ = a2 + εa3 ∈ D.
The addition and multiplication rules of two hyper-dual numbers A = a0 +ε1a1 +ε2a2 +

ε1ε2a3 = A + ε∗A
∗ and B = b0 + ε1b1 + ε2b2 + ε1ε2b3 = B + ε∗B

∗ given, respectively, by
Eqs. (2.15) and (2.16) can be expressed differently as

A + B = (A + B) + ε∗
(
A

∗ + B
∗)

, (2.21)

AB = AB + ε∗
(
AB

∗ + A
∗
B
)

. (2.22)

An alternative representation of the multiplicative-inverse of a hyper-dual number A =
a0 + ε1a1 + ε2a2 + ε1ε2a3 = A + ε∗A

∗ given by Eq. (2.17) can be given as

A−1 = 1
A

− ε∗ A
∗

A2 , for a0 ̸= 0. (2.23)

This means that a hyper-dual number A = A + ε∗A
∗ providing A = 0 + εa1 = εa1 does

not have an inverse.
If we extend the real vectors a and p×a in a dual vector Â = a+ε (p × a), respectively,

to the dual vectors Â and P̂ ×D Â then we obtain the hyper-dual vector

Ã = Â + ε∗
(
P̂ ×D Â

)
. (2.24)

Scalar and vector products of any hyper-dual vectors Ã = Â + ε∗
(
P̂ ×D Â

)
and B̃ =

B̂ + ε∗
(
K̂ ×D B̂

)
can be given, respectively, as⟨

Ã, B̃
⟩

HD
=
∣∣∣Â∣∣∣

D

∣∣∣B̂∣∣∣
D

cos φ̃ (2.25)

Ã ×HD B̃ =
∣∣∣Â∣∣∣

D

∣∣∣B̂∣∣∣
D

n sin φ̃, (2.26)

where φ̃ is a hyper-dual angle and n is the common perpendicular direction vector to
the hyper-dual vectors Ã and B̃, directed from Â to B̂. For further information about
hyper-dual numbers, see [3–5].
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3. Hyper-dual numbers and ruled surfaces
In this section, we express some basic concepts of hyper-dual numbers. Using these

expressions, we define a subset S2
D̃1

of unit hyper-dual sphere S2
D̃ such that each element

of S2
D̃1

represents two intersecting and perpendicular directed lines in R3. Moreover, we
show that each hyper-dual curve on S2

D̃1
represents two ruled surfaces in R3. These ruled

surfaces have a common base curve and their rulings are perpendicular.

3.1. Some basic concepts of hyper-dual numbers
The square root of a hyper-dual number A = A + ε∗A

∗ can be defined by
√
A =

√
A + ε∗ A

∗

2
√

A
, for a0 > 0 (3.1)

or
√
A =

√
a0 + ε

a1
2√

a0
+ ε∗ a2

2√
a0

+ εε∗
(

a3
2√

a0
− a1a2

4a0
√

a0

)
, for a0 > 0. (3.2)

The set of all hyper-dual vectors is defined to be

D̃3 =
{
Ã = Â + ε∗Â

∗ : Â, Â
∗ ∈ D3

}
(3.3)

=
{
Ã = a0 + εa1 + ε∗a2 + εε∗a3 : a0, a1, a2, a3 ∈ R3

}
, (3.4)

and each element Ã of D̃3 is called a hyper-dual vector.
The scalar and vector products of any hyper-dual vectors Ã = Â + ε∗Â

∗ = a0 + εa1 +
ε∗a2 + εε∗a3 and B̃ = B̂ + ε∗B̂

∗ = b0 + εb1 + ε∗b2 + εε∗b3 are defined, respectively, by⟨
Ã, B̃

⟩
HD

=
⟨
Â, B̂

⟩
D

+ ε∗
(⟨

Â, B̂
∗⟩

D
+
⟨
Â

∗
, B̂
⟩

D

)
(3.5)

= ⟨a0, b0⟩ + ε(⟨a0, b1⟩ + ⟨a1, b0⟩) + ε∗(⟨a0, b2⟩ + ⟨a2, b0⟩)
+ εε∗(⟨a0, b3⟩ + ⟨a1, b2⟩ + ⟨a2, b1⟩ + ⟨a3, b0⟩), (3.6)

Ã ×HD B̃ = Â ×D B̂ + ε∗
(
Â ×D B̂

∗ + Â
∗ ×D B̂

)
(3.7)

= a0 × b0 + ε(a0 × b1 + a1 × b0) + ε∗(a0 × b2 + a2 × b0)
+ εε∗(a0 × b3 + a1 × b2 + a2 × b1 + a3 × b0). (3.8)

It is obvious that
⟨
Ã, B̃

⟩
HD

and Ã ×HD B̃ are, respectively, a hyper-dual number and a
hyper-dual vector.

The norm of a hyper-dual vector Ã = Â + ε∗Â
∗ = a0 + εa1 + ε∗a2 + εε∗a3 is defined to

be

NÃ =
⟨
Ã, Ã

⟩
HD

=
∣∣∣Â∣∣∣2

D
+ 2ε∗

⟨
Â, Â

∗⟩
D

(3.9)

= |a0|2 + 2 (ε ⟨a0, a1⟩ + ε∗ ⟨a0, a2⟩ + εε∗(⟨a0, a3⟩ + ⟨a1, a2⟩)) . (3.10)

The modulus (i.e., square root of the norm) of the hyper-dual vector Ã is also defined to
be ∣∣∣Ã∣∣∣

HD
=
√⟨

Ã, Ã
⟩

HD
=
∣∣∣Â∣∣∣

D
+ ε∗

⟨
Â, Â

∗
⟩

D∣∣∣Â∣∣∣
D

(3.11)

= |a0| + ε
⟨a0, a1⟩

|a0|
+ ε∗ ⟨a0, a2⟩

|a0|

+ εε∗
(

⟨a0, a3⟩
|a0|

+ ⟨a1, a2⟩
|a0|

− ⟨a0, a1⟩ ⟨a0, a2⟩
|a0|3

)
, (3.12)



192 S. Aslan, M. Bekar, Y. Yaylı

where |a0| ̸= 0.
If
∣∣∣Ã∣∣∣

HD
= 1 (i.e.,

∣∣∣Â∣∣∣
D

= 1 and
⟨
Â, Â

∗
⟩

D
= 0), then Ã = Â + ε∗Â

∗ is called a unit
hyper-dual vector.

Definition 3.1. [Unit hyper-dual sphere] Unit hyper-dual sphere S2
D̃, consisting of all unit

hyper-dual vectors, is defined as

S2
D̃=

{
Ã = Â + ε∗Â

∗ :
∣∣∣Ã∣∣∣

HD
= 1; Â, Â

∗ ∈ D3
}

. (3.13)

Theorem 3.2. Let us take a subset of unit hyper-dual sphere S2
D̃ as

S2
D̃1

=
{
Ã = Â + ε∗Â

∗ :
∣∣∣Â∗

∣∣∣
D

= 1, Ã ∈ S2
D̃

}
⊂ S2

D̃. (3.14)

Then, there exists a one-to-one correspondence between the points of S2
D̃1

and any two
intersecting perpendicular directed lines in R3.

Proof. Since Ã ∈ S2
D̃1

, Â and Â
∗ are unit dual vectors and Ã = Â + ε∗Â

∗ is a unit hyper-

dual vector satisfying
∣∣∣Â∣∣∣

D
= 1 and

⟨
Â, Â

∗
⟩

D
= 0. According to Theorem 2.1, the unit

dual vectors Â and Â
∗ represent the directed lines d1 and d2 in R3, respectively. Using

Eq. (2.11), the dual angle φ = θ + εθ∗ between Â and Â
∗ can be given as⟨

Â, Â
∗⟩

D
= cos θ − εθ∗ sin θ = cos φ. (3.15)

From
⟨
Â, Â

∗
⟩

D
= 0, we get θ = π

2
and θ∗ = 0. Thus, the lines d1 and d2 are perpendicular

and intersecting in R3. �

3.2. Ruled surfaces constructed by hyper-dual curves on S2
D̃1

A ruled surface in R3 is a surface swept out by a straight line moving along a curve.
The various positions of the generating line are called the rulings of the surface. Such a
surface can be given by the parametrization

Φ(t, v) = β(t) + vγ(t), t ∈ I = (a, b) ⊂ R, v ∈ R. (3.16)
Here; β(t) is the base curve of Φ(t, v) and the unit vector γ(t) is the director curve of
Φ(t, v) [15].

A dual curve in D3 can be defined as
Γ̂ : I ⊂ R −→ D3

t−→Γ̂(t) = (a1(t) + εa∗
1(t), a2(t) + εa∗

2(t), a3(t) + εa∗
3(t))

= a(t) + εa∗(t), (3.17)
where I is an open interval in R and a(t) = (a1(t), a2(t), a3(t)), a∗(t) = (a∗

1(t), a∗
2(t), a∗

3(t)) ∈
R3. If every real valued functions ai(t) and a∗

i (t) are differentiable for i = 1, 2, 3, then the
dual space curve Γ̂(t) is differentiable. And if

∣∣∣Γ̂(t)
∣∣∣
D

= 1, then the dual curve Γ̂(t) is on
unit dual sphere S2

D [16].
Let Γ̂(t) = a(t) + εa∗(t) be a dual curve on the unit dual sphere S2

D. Then, the ruled
surface corresponding to the dual curve Γ̂(t) can be given in R3 as

Φ(t, u) = a(t) × a∗(t) + ua(t), t ∈ I ⊂ R, u ∈ R (3.18)
where α(t) = a(t)×a∗(t) is the base curve and a(t) is the director curve of Φ(t, u) [10,20].

Definition 3.3. [Hyper-dual curve] A hyper-dual curve in D̃3 can be defined as

Γ̃ : I ⊂ R −→ D̃3

t−→Γ̃(t) = Â(t) + ε∗Â
∗(t)

(3.19)
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where I is an open interval in R. If Â(t) and Â
∗(t) are differentiable dual curves in D3,

then the hyper-dual curve Γ̃(t) in D̃3 is differentiable. And if
∣∣∣Γ̃(t)

∣∣∣
HD

= 1, then Γ̃(t) is a
hyper-dual curve on unit hyper-dual sphere S2

D̃. Moreover if Γ̃(t) is a hyper-dual curve on
S2
D̃ and

∣∣∣Â∗(t)
∣∣∣
D

= 1, then Γ̃(t) is a hyper-dual curve on S2
D̃1

.

Theorem 3.4. Let Γ̃(t) = Â(t) + ε∗Â
∗(t) be a hyper-dual curve on S2

D̃1
. Then, each

hyper-dual curve Γ̃(t) represents two ruled surfaces in R3 such that these surfaces have a
common base curve and the position vectors of their director curves are perpendicular.

Proof. Since Γ̃(t) = Â(t) + ε∗Â
∗(t) is a hyper-dual curve on S2

D̃1
, Â(t) and Â

∗(t) are dual
curves on unit dual sphere S2

D. These curves Â(t) and Â
∗(t) can be expressed as

Â(t) = a0(t) + εa1(t) and Â
∗(t) = a2(t) + εa3(t), (3.20)

where a0(t), a1(t), a2(t), a3(t) ∈ R3. The scalar product of Â(t) = a0(t) + εa1(t) and
Â

∗(t) = a2(t) + εa3(t) is⟨
Â(t), Â

∗(t)
⟩

D
= ⟨a0(t), a2(t)⟩ + ε(⟨a0(t), a3(t)⟩ + ⟨a1(t), a2(t)⟩). (3.21)

Since Γ̃(t) is a hyper-dual curve on S2
D̃1

, it is also a hyper-dual curve on S2
D̃, and thus⟨

Â(t), Â
∗(t)

⟩
D

= 0. This means that

⟨a0(t), a2(t)⟩ = 0 and ⟨a0(t), a3(t)⟩ + ⟨a1(t), a2(t)⟩ = 0. (3.22)
Using Eq. (3.18), the ruled surfaces corresponding to Â(t) = a0(t) + εa1(t) and Â

∗(t) =
a2(t) + εa3(t) can be given, respectively, as

Φ1(t, u1) = a0(t) × a1(t) + u1a0(t), u1 ∈ R, (3.23)
Φ2(t, u2) = a2(t) × a3(t) + u2a2(t), u2 ∈ R, (3.24)

where α1(t) = a0(t) × a1(t) and α2(t) = a2(t) × a3(t) are the base curves of Φ1(t, u1)
and Φ2(t, u2), respectively. Also, a0(t) and a2(t) are the director curves of Φ1(t, u1) and
Φ2(t, u2), recpectively.

For t = t0, let us denote Φ1(t0, u1) by the line mt0(u1) and Φ2(t0, u2) by the line nt0(u2).
It is obvious that mt(u1) and nt(u2) are, recpectively, the rulings of the surfaces Φ1(t, u1)
and Φ2(t, u2), for all t ∈ I. Moreover, mt0(u1) is a line corresponding to the unit dual
vector Â(t0) = a0(t0) + εa1(t0) and nt0(u2) is a line corresponding to the unit dual vector
Â

∗(t0) = a2(t0) + εa3(t0), where a0(t0) and a2(t0) are the direction vectors of mt0(u1)
and nt0(u2), respectively.

Since Γ̃(t0) = Â(t0) + ε∗Â
∗(t0) ∈ S2

D̃1
, Γ̃(t0) represents two intersecting perpendicular

lines (which are mt0(u1) and nt0(u2)) in R3. Let us denote the intersection point of the
lines mt(u1) and nt(u2) by k(t), for all t ∈ I. Then, according to E. Study mapping the
moments of the vectors a0(t) and a2(t) with respect to the origin O can be given as

a1(t) = k(t) × a0(t), (3.25)
a3(t) = k(t) × a2(t), (3.26)

respectively. Inserting Eq. (3.25) in Eq. (3.23), we get
Φ1(t, u1) = a0(t) × a1(t) + u1a0(t)

= a0(t) × (k(t) × a0(t)) + u1a0(t)
= ⟨a0(t), a0(t)⟩ k(t) − ⟨a0(t), k(t)⟩ a0(t) + u1a0(t)
= k(t) − ⟨a0(t), k(t)⟩ a0(t) + u1a0(t)
= k(t) + (u1 − ⟨a0(t), k(t)⟩) a0(t), (3.27)



194 S. Aslan, M. Bekar, Y. Yaylı

where ⟨a0(t), a0(t)⟩ = 1. And inserting v1 = u1 − ⟨a0(t), k(t)⟩ in Eq. (3.27), we also get
Eq. (3.23) as

Φ1(t, v1) = k(t) + v1a0(t), v1 ∈ R. (3.28)
Similarly, we can obtain Eq. (3.24) as

Φ2(t, v2) = k(t) + v2a2(t), v2 ∈ R. (3.29)
From Eqs. (3.28) and (3.29), it can be seen that ruled surfaces Φ1(t, v1) and Φ2(t, v2)
possess a common base curve that is k(t). And from Eq. (3.22), it can be seen that the
position vectors of the director curves a0(t) and a2(t) of the surfaces Φ1(t, v1) and Φ2(t, v2)
are perpendicular, see Fig. 2.

Figure 2. Geometric representation of two ruled surfaces in R3 corresponding to
the hyper-dual curve Γ̃(t) on S2

D̃1
.

�

Theorem 3.5. Let Φ1(t, v1) = k(t) + v1a0(t) and Φ2(t, v2) = k(t) + v2a2(t) be the ruled
surfaces corresponding to the hyper-dual curve Γ̃(t) = Â(t)+ε∗Â

∗(t) on S2
D̃1

, where Â(t) =
a0(t)+εa1(t) and Â

∗(t) = a2(t)+εa3(t). Then, the normal vectors of the surfaces Φ1(t, v1)
and Φ2(t, v2) are perpendicular along the common base curve k(t) if and only if the velocity

vector d

dt
k(t) = k′(t) is perpendicular to a0(t) or a2(t).

Proof. The normal vectors of Φ1(t, v1) and Φ2(t, v2) can be obtained, respectively, as

n1(t, v1) = a0(t) ×
(
k′(t) + v1a′

0(t)
)

, (3.30)
n2(t, v2) = a2(t) ×

(
k′(t) + v2a′

2(t)
)

. (3.31)

Since the surfaces Φ1(t, v1) and Φ2(t, v2) intersect along the common base curve k(t) if
v1 = v2 = 0, we get the normal vectors n1(t, v1) and n2(t, v2) along the base curve k(t) as

n1(t, 0) = a0(t) × k′(t), (3.32)
n2(t, 0) = a2(t) × k′(t), (3.33)

for all t ∈ I. Then, we obtain the scalar product of these vectors as

⟨n1(t, 0), n2(t, 0)⟩ = −
⟨
a0(t), k′(t)

⟩ ⟨
k′(t), a2(t)

⟩
. (3.34)

This means that n1 and n2 are perpendicular along k(t) if and only if ⟨a0(t), k′(t)⟩ = 0
or ⟨k′(t), a2(t)⟩ = 0. �

Proposition 3.6. Consider two ruled surfaces Φ1(t, v1) = k(t) + v1a0(t) and Φ2(t, v2) =
k(t) + v2a2(t) corresponding to the hyper-dual curve Γ̃(t) ∈ S2

D̃1
such that their normal

vectors are perpendicular along their common base curve k(t). If k(t) is the principal
curve of Φ1(t, v1) (resp., Φ2(t, v2)), then k(t) is also the principal curve of Φ2(t, v2) (resp.,
Φ1(t, v2)).
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Proof. Let k(t) be a curve both on the surfaces Φ1(t, v1) = k(t) + v1a0(t) and Φ2(t, v2) =
k(t) + v2a2(t). And assume that the Darboux frames (see [15]) along the curve k(t) on
Φ1(t, v1) and Φ2(t, v2) are, respectively, {t1(t), y1(t), n1(t)} and {t2(t), y2(t), n2(t)}, that
means

t1(t, 0) = t2(t) = d

dt
k(t) = k′(t) = t(t), (3.35)

n1(t, 0) = a0(t) × k′(t) = a0(t) × t(t), (3.36)
n2(t, 0) = a2(t) × k′(t) = a2(t) × t(t), (3.37)
y1(t, 0) = n1(t, 0) × t1(t) = n1(t, 0) × t(t), (3.38)
y2(t, 0) = n2(t, 0) × t2(t) = n2(t, 0) × t(t). (3.39)

Moreover, we have
d

dt
n1(t, 0) = −kn1t(t) − tg1y1(t, 0), (3.40)

d

dt
n2(t, 0) = −kn2t(t) − tg2y2(t, 0), (3.41)

where kn1 , kn2 are the normal curvatures and tg1 , tg2 are the geodesic torsions. If tg1 = 0
or tg2 = 0, then k(t) is a principal curve. Since the normal vectors n1 and n2 are
perpendicular,

⟨n1(t, 0), n2(t, 0)⟩ = 0. (3.42)
By taking the derivative of this equation, we get

d

dt
⟨n1(t, 0), n2(t, 0)⟩ =

⟨
d

dt
n1(t, 0), n2(t, 0)

⟩
+
⟨

n1(t, 0), d

dt
n2(t, 0)

⟩
.

Using Eqs. (3.40-42), we obtain

⟨−kn1t(t) − tg1y1(t, 0), n2(t, 0)⟩ + ⟨n1(t, 0), −kn2t(t) − tg2y2(t, 0)⟩ = 0. (3.43)

And since ⟨n1(t, 0), t(t)⟩ = ⟨t(t), n2(t, 0)⟩ = 0, we get

− tg1 ⟨y1(t, 0), n2(t, 0)⟩ − tg2 ⟨n1(t, 0), y2(t, 0)⟩ = 0. (3.44)

That is
− tg1 ⟨y1(t), n2(t)⟩ = tg2 ⟨n1(t), y2(t)⟩ . (3.45)

As a result, if tg1 = 0 (resp. tg2 = 0), then tg2 = 0 (resp. tg1 = 0). And this completes the
proof. �

4. Examples of ruled surfaces constructed by curves on S2
D̃1

Example 4.1. Let us take the hyper-dual curve Γ̃(t) = Â(t) + ε∗Â
∗(t), where Â(t) =

a0(t) + εa1(t) and Â
∗(t) = a2(t) + εa3(t). Here;

a0(t) = (cos t cos 2t, cos t sin 2t, sin t) , (4.1)
a1(t) = (sin t sin 2t, − sin t cos 2t, 0) , (4.2)
a2(t) = (sin t cos 2t, sin t sin 2t, − cos t) , (4.3)
a3(t) = (− cos t sin 2t, cos t cos 2t, 0) . (4.4)

Since
∣∣∣Â(t)

∣∣∣
D

=
∣∣∣Â∗(t)

∣∣∣
D

= 1 and
⟨
Â(t), Â

∗(t)
⟩

D
= 0; Γ̃(t) is a hyper-dual curve on

S2
D̃1

, and Â(t) and Â
∗(t) are dual curves on unit dual sphere S2

D. Using Eqs. (3.23) and
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(3.24), the ruled surfaces corresponding to the dual curves Â(t) = a0(t) + εa1(t) and
Â

∗(t) = a2(t) + εa3(t) are obtained, respectively, as

Φ1(t, u1) =
(
sin2 t cos 2t, sin2 t sin 2t, − sin t cos t

)
+ u1 (cos t cos 2t, cos t sin 2t, sin t) , (4.5)

Φ2(t, u2) =
(
cos2 t cos 2t, cos2 t sin 2t, sin t cos t

)
+ u2 (sin t cos 2t, sin t sin 2t, − cos t) , (4.6)

where t ∈ I = (0, π) and u1, u2 ∈ R. For t = t0, Φ1(t0, u) and Φ2(t0, u) represent the lines
mt0(u1) and nt0(u2), respectively. Moreover, mt0(u1) is a line corresponding to the unit
dual vector Â(t0) = a0(t0) + εa1(t0), and nt0(u2) is a line corresponding to the unit dual
vector Â

∗(t0) = a2(t0) + εa3(t0).
For all t ∈ I, the intersection point of the lines mt(u1) and nt(u2) will be obtained as

k(t) = (cos 2t, sin 2t, 0) , (4.7)

where u1 = cos t and u2 = sin t. Using Eqs. (3.28) and (3.29), these ruled surfaces can be
expressed as

Φ1(t, v1) = (cos 2t, sin 2t, 0) + v1 (cos t cos 2t, cos t sin 2t, sin t) , (4.8)
Φ2(t, v2) = (cos 2t, sin 2t, 0) + v2 (sin t cos 2t, sin t sin 2t, − cos t) , (4.9)

where v1, v2 ∈ R. From Eqs. (4.8) and (4.9), it can be seen that the ruled surfaces Φ1(t, v1)
and Φ2(t, v2) have a common base curve k(t) = (cos 2t, sin 2t, 0). Using Eqs. (4.1) and
(4.3), we get ⟨a0(t), a2(t)⟩ = 0. Thus, the position vectors of the director curves a0(t) and
a2(t) of the surfaces Φ1(t, v1) and Φ2(t, v2) are perpendicular.

The velocity vector k′(t) = (−2 sin 2t, 2 cos 2t, 0) is perpendicular to a0(t) and a2(t).
Thus, according to Theorem 3.5 the normal vectors of Φ1(t, v1) and Φ2(t, v2) are perpen-
dicular along k(t).

Φ1(t, v1) and Φ2(t, v2) represent Möbius strips. For intervals 0 ≤ t ≤ π, −0.3 ≤ v1 ≤ 0.3
and −0.3 ≤ v2 ≤ 0.3, these two Möbius strips can be drawn as in Fig. 3.

Figure 3. Geometric representation of two Möbius strips in R3 corresponding to
the hyper-dual curve Γ̃(t) on S2

D̃1
.
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Example 4.2. Let us take the hyper-dual curve Γ̃(t) = Â(t) + ε∗Â
∗(t), where Â(t) =

a0(t) + εa1(t) and Â
∗(t) = a2(t) + εa3(t). Here;

a0(t) = (0, 0, 1) , (4.10)
a1(t) = (sin t, − cos t, 0) , (4.11)
a2(t) = (cos t, sin t, 0) , (4.12)
a3(t) = (−t sin t, t cos t, 0) . (4.13)

Since
∣∣∣Â(t)

∣∣∣
D

=
∣∣∣Â∗(t)

∣∣∣
D

= 1 and
⟨
Â(t), Â

∗(t)
⟩

D
= 0; Γ̃(t) is a curve on S2

D̃1
, and Â(t)

and Â
∗(t) are dual curves on unit dual sphere S2

D. Using Eqs. (3.23) and (3.24), the ruled
surfaces corresponding to the dual curves Â(t) = a0(t)+εa1(t) and Â

∗(t) = a2(t)+εa3(t)
are obtained, respectively, as

Φ1(t, u1) = (cos t, sin t, 0) + u1 (0, 0, 1) , (4.14)
Φ2(t, u2) = (0, 0, t) + u2 (cos t, sin t, 0) , (4.15)

where t ∈ I = (0, π) and u1, u2 ∈ R. From the Theorem 3.4, the ruled surfaces Φ1(t, u1)
and Φ2(t, u2) can be also obtained, respectively, as

Φ1(t, v1) = (cos t, sin t, t) + v1(0, 0, 1), v1 ∈ R (4.16)
Φ2(t, v2) = (cos t, sin t, t) + v2(cos t, sin t, 0), v2 ∈ R (4.17)

where k(t) = (cos t, sin t, t) is a common base curve of Φ1(t, v1) and Φ2(t, v2). Since
⟨a0(t), a2(t)⟩ = 0, the position vectors of the director curves a0(t) = (0, 0, 1) and a2(t) =
(cos t, sin t, 0) are perpendicular.

The velocity vector k′(t) = (− sin t, cos t, 1) is perpendicular to a2(t). Thus, according
to Theorem 3.5 the normal vectors of Φ1(t, v1) and Φ2(t, v2) are perpendicular along k(t).

Φ1(t, v1) and Φ2(t, v2) represent, respectively, cylindrical and helicoid surfaces. They
intersect along a helix curve k(t) = (cos t, sin t, t). For intervals −π ≤ t ≤ π, −10 ≤ v1 ≤ 10
and −10 ≤ v2 ≤ 10, these surfaces can be drawn as in Fig. 4.

Figure 4. Geometric representation of two ruled surfaces in R3 corresponding to
the hyper-dual curve Γ̃(t) on S2

D̃1
.

5. Conclusions
In this paper, some basic concepts of hyper-dual numbers are given by using dual

numbers. Using these concepts, we have given the definition of a set S2
D̃1

, which is a subset
of unit hyper-dual sphere S2

D̃. We show that there exists a one-to-one correspondence
between the points of S2

D̃1
and any two intersecting perpendicular directed lines in R3.
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Moreover, we show that each hyper-dual curve on S2
D̃1

represents two ruled surfaces in R3

such that these ruled surfaces intersect along a common base curve.

References
[1] O.P. Agrawal, Hamilton operators and dual-number-quaternions in spatial kinematics,

Mech. Mach. Theory, 22 (6), 569-575, 1987.
[2] W.K. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc. 4 (64),

381-395, 1873.
[3] A. Cohen and M. Shoham, Application of hyper-dual numbers to multi-body kinemat-

ics, J. Mech. Robot., 8 (1), 011015, (4 pages), 2016.
[4] A. Cohen and M. Shoham, Application of hyper-dual numbers to rigid bodies equations

of motion, Mech. Mach. Theory 111, 76-84, 2017.
[5] A. Cohen and M. Shoham, Principle of transference-An extension to hyper-dual num-

bers, Mech. Mach. Theory 125, 101-110, 2018.
[6] J.A. Fike, Numerically exact derivative calculations using hyper-dual numbers, 3rd

Annual Student Joint Workshop in Simulation-Based Engineering and Design, 2009.
[7] J.A. Fike and J.J. Alonso, The development of hyper-dual numbers for exact second-

derivative calculations, 49th AIAA Aerodpace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, 4-7, 2011.

[8] J.A. Fike and J.J. Alonso, Automatic differentiation through the use of hyper-dual
numbers for second derivatives, in: Lecture Notes in Computational Science and
Engineering, 87 (201), 163-173, 2011.

[9] J.A. Fike, S. Jongsma, J.J. Alonso, and E. van der Weida, Optimization with gradi-
ent and hessian information calculated using hyper-dual numbers, 29 AIAA Applied
Aerodynamics Conference, 2011.

[10] F. Hathout, M. Bekar, and Y. Yaylı, Ruled surfaces and tangent bundle of unit 2-
sphere, Int. J. Geom. Methods Mod. Phys., 14 (10), 1750145, 2017.

[11] A.P. Kotelnikov, Screw calculus and some applications to geometry and mechanics,
Annal. Imp. Univ. Kazan, Russia, 1895.

[12] J.M. McCarthy, The Instantaneous Kinematics of Line Trajectories in Terms of a
Kinematic Mapping of Spatial Rigid Motion, ASME J. Mech., Transm., Autom. Des.
109 (1), 95-100, 1987.

[13] J.M. McCarthy, On the Scalar and Dual Formulations of the Curvature Theory of
Line Trajectories, ASME J. Mech., Transm., Autom. Des. 109, 101-106, 1987.

[14] Y.S. Oh, P. Abhishesh, and B.S. Ryuh, Study on Robot Trajectory Planning by Robot
EndEffector Using Dual Curvature Theory of the Ruled Surface, World Academy of
Science, Engineering and Technology, International Journal of Mechanical, Aerospace,
Industrial, Mechatronic and Manufacturing Engineering 11 (3), 577-582, 2017.

[15] B. O’Neill, Elementary Differential Geometry, Revised 2nd edition, Academic Press,
USA, 2006.

[16] M. Önder and H.H. Uğurlu, Normal and Spherical Curves in Dual Space D3, Mediterr.
J. Math. 10, 1527-1537, 2013.

[17] B.S. Ryuh and G.R. Pennock, Accurate motion of a robot end-effector using the curva-
ture theory of ruled surfaces, Journal of Mechanisms, Transmissions and Automation
in Design 110 (4), 383-388, 1988.

[18] K. Sprott and B. Ravani, Kinematic generation of ruled surfaces, Adv. Comput. Math.
17, 115-133, 2002.

[19] E. Study, Geometry der Dynamen, Leipzig, 1901.
[20] G.R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous,

spatial kinematics, Mech. Mach. Theory 11 (2), 141-156, 1976.


