
 

 
 

   Copyright © IJCESEN 

 

International Journal of Computational and 

Experimental Science and ENgineering 

(IJCESEN) 
Vol. 7-No.3 (2021) pp. 156-163 

http://dergipark.org.tr/en/pub/ijcesen  
ISSN: 2149-9144 

Research Article 

 

The Prediction of Chiral Metamaterial Resonance using Convolutional Neural 

Networks and Conventional Machine Learning Algorithms  
 

Aybike URAL YALÇIN1, Zeynep Hilal KİLİMCİ2,* 

 
1Doğuş University, Engineering Faculty, Department of Mechanical Engineering, 34775, İstanbul-Turkey 

Email: aural@dogus.edu.tr ORCID: 0000-0002-3923-1821 
 

2Kocaeli University, Technology Faculty, Department of Information Systems Engineering, 41001, Kocaeli-Turkey 
* Corresponding Author Email: zeynep.kilimci@kocaeli.edu.tr  ORCID: 0000-0003-1497-305X 

 
Article Info: 

 
DOI: 10.22399/ijcesen.973726 

Received : 22 July 2021 

Accepted : 29 November 2021 

 

Keywords:  
 

Chiral metamaterials 

Convolutional neural network  

Deep learning 

Machine learning  

Microwave resonance 

 

Abstract:  
 

Electromagnetic resonance is the most important distinguishing property of 

metamaterials to examine many unusual phenomena. The resonant response of 

metamaterials can depend many parameters such as geometry, incident wave 

polarization. The estimation and the design of the unit cells can be challenging for 

the required application. The research on resonant behavior can yield promising 

applications. We investigate the resonance frequency of the chiral resonator as a 

unit of chiral metamaterial employing both traditional machine learning 

algorithms and convolutional deep neural networks. To our knowledge, this is the 

very first attempt on chiral metamaterials in that comparing the impact of various 

machine learning algorithms and deep learning model. The effect of geometrical 

parameters of the chiral resonator on the resonance frequency is studied. For this 

purpose, convolutional neural networks, support vector machines, naive Bayes, 

decision trees, random forests are employed for classification of resonance 

frequency. Extensive experiments are performed by varying training set 

percentages, epoch sizes, and data sets. Experiment results demonstrate that the 

usage of convolutional neural networks is superior in terms of prediction 

performance of chiral metamaterial resonance compared to the other techniques 

with 58.29% of accuracy on dataset1, and 68.77% of accuracy on dataset2. 

 

 

1. Introduction 
 

The chirality refers to a structural property of an 

object that cannot be superimposed on its mirror 

image [1]. The existence of chirality in nature at 

macro and molecular scale lead to a wide variety of 

research. Despite the natural phenomenas [2], 

artificially made materials called metamaterials can 

exhibit chiral properties. Metamaterials are 

composed of periodically arranged resonant 

elements, unit cells, which show unnatural 

electromagnetic and optical properties, such as 

negative refraction, which are not seen in naturally 

occurring materials [3,4]. Various chiral resonators 

are used to build chiral metamaterials such as helical 

wires, chiral split ring resonators (SRR) [5], 

gammadions [4] or cross-wire [6] structures. The 

optical response of chiral metamaterials is studied 

also in terahertz regime [7-10]. Some designs are 

proposed to avoid bianisotropic effects [11-12]. 

Omega shaped particles are another building blocks 

of metamaterials for the realization of the negative 

index which is experimentally verified [13-14]. 

Transmission properties of metamaterials formed by 

omega shaped inclusions are investigated in [15]. It 

is shown that the periodic arrays can be employed in 

stop/pass band applications due to the 

magnetoelectric resonances. Another artificial chiral 

object is called a canonical spiral replacing a helix in 

order to simplify the electromagnetic analysis [16].  

In [17], an analytical antenna model is used to 

analyze such chiral scatterers. The canonical spiral 

is designed for chiral metamaterials where 

independently the linear polarization of the incident 

wave can be radiated as a circularly polarized wave 

[18]. As a consequence of the design, a particular 

helicity is completely transparent for circular 

electromagnetic waves of the same helicity [18]. The 

canonical spirals are capable also in cloaking 

application [19].  
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In this work, we design a metamaterial structure 

given a desired chiral response or even to simply 

predict the trend in chiral response as the structure 

transforms. The electromagnetic response of 

canonical spiral shaped chiral resonators in the 

microwave regime will be examined by a proposed 

method based on both machine learning algorithms 

and deep learning methodology. The application of 

deep learning algorithms are rather popular in recent 

years in different research fields such as image 

processing, natural language processing, speech 

recognition, video processing, sentiment analysis, 

text classification, computer vision, pattern 

recognition, and machine translation. Furthermore, 

deep neural network models are also utilized in 

various research domains beyond computer science 

such as physics with various subfields like material 

science, chemistry, laser physics, particle physics, 

quantum mechanics, and microscopy [20-26]. Deep 

learning networks applied in many studies to the 

inverse engineering to reveal the metamaterials 

response in optics and acoustics [27-30]. For the 

purpose of eliminating disadvantages of 

conventional machine learning algorithms, deep 

learning methodology is preferred by the researches 

in many fields because of its superior performance. 

In other words, the main reason behind the choice of 

deep learning models by the researchers both better 

representation of features, predictions, and results 

when compared with traditional machine learning 

algorithms. Deep learning models are mostly 

employed to ensure automatic feature extraction 

procedure thereby training complex features with 

minimal external support to achieve meaningful 

representation of data through deep neural networks. 

Besides automatic feature extraction, deep learning 

methods are also used for the purpose of 

classification tasks in many fields. Due to both 

excellent performance of deep learning models in the 

state-of-the-art studies and the lack of 

implementation of deep learning models on optical 

chiral metamaterials subfield, we concentrate on 

Convolutional Neural Network (CNN) as deep 

learning model for the purpose of eliminating this 

deficiency in this study, in addition to machine 

learning algorithms. 

In the present work, the resonance frequency of the 

chiral structure as a unit of chiral metamaterial is 

studied using both traditional machine learning 

algorithms and convolutional deep neural networks. 

The main objective of this study is the prediction of 

the resonance response of the canonical spiral 

through the proposed model. For this purpose, 

convolutional neural networks, support vector 

machines, naive Bayes, decision trees, random 

forests are used for frequency selective 

classification. The novelty of this study is to 

investigate the impact of the most popular deep 

learning method, CNN, which is not implemented 

yet on the chiral metamaterial design. To the best of 

our knowledge, this is the very first study on chiral 

metamaterials in that comparing the impact of 

various machine learning algorithms and deep 

learning model. 

The paper is organized as follows: In section 2, 

machine learning algorithms and convolutional 

neural network employed in this study is introduced. 

In section 3, we describe the chiral resonator and the 

numerical model from which we gathered the data 

and the proposed framework. The section 4 

discusses the results and then we conclude the paper. 

 

2. Models 
 

In this section, methods used in this work are briefly 

presented. 

 

2.1. Naive Bayes Algorithm (NB) 

 

Naive Bayes is a well-known and mostly employed 

classification model for both two-class (binary) and 

multi-class classification problems. The naive Bayes 

algorithm is based upon independency of features in 

the data set that is base of Bayes's theorem. It is easy 

to construct and not complex which makes it 

especially beneficial for huge data sets. In spite of its 

simpleness, the Naive Bayes algorithm works well 

and presents superior classification performances 

compared to more complicated classification 

models. There are different event models for NB 

algorithm such as Gaussian naive Bayes, 

Multinomial naïve Bayes, Bernoulli naive Bayes, 

etc. Gaussian NB model is the easiest way to forecast 

the distribution of the data set because it predicts just 

the standard deviation and the mean of training data 

set. In this work, we focus on the Gaussian naive 

Bayes method [31-36]. 

 

2.2. Support Vector Machine (SVM)  

 
Support vector machine (SVM) is employed as a 

supervised learning method that is used for 

classification and regression problems. The main 

purpose of support vector machine method is to 

discover a hyperplane in an N-dimensional space 

that plainly categorizes the points of data set. 

However, support vector machine is responsible for 

finding a plane with the maximum space between 

data points of both categories among many potential 

hyperplanes for the purpose of dividing the two 

classes. This procedure is called margin 

maximization that facilitates the classification task 

for unseen instances with more confidence. 

Furthermore, SVM is also capable to implement 
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non-linear classification task in addition to linear 

classification which is called kernel trick, implicitly 

mapping their inputs into high-dimensional spaces. 

According to data set distribution, there are too many 

kernel tricks such as linear, polynomial, radial basis 

function, sigmoid when SVM is constructed. In this 

work, each version is implemented and polynomial 

is selected as the best [33-40]. 

 

2.3. Decision Tree (DT) 

 

Decision tree method is one of the predicting models 

employed in machine learning. Decision trees are 

also popular machine learning algorithms in terms of 

their comprehensibility and simplicity. The main 

objective of decision trees is to construct a model 

that predicts a target value (class) based upon 

different inputs. A decision tree is evaluated as a 

predictive model with branches and leaves. Here, 

observations are the branches while target value of 

related observation is represented as leaves. In 

classification trees, class labels are demonstrated 

with leaves and association of the features are 

indicated as branches. In other words, a tree is 

constructed by dividing the source data set, 

composing the root node of the tree, into subsets 

(children). The dividing procedure is implemented 

with a set of splitting rules based upon features of 

classification. When this procedure is repeated for 

each derivate subset, it is called as recursion. 

Recursion is finished when target variable has same 

results at a node for each subset. This widely 

accepted approach for decision trees is known as 

top-down induction that signs the greedy algorithm. 

As a summary, decision trees ensure the 

consolidation of computational and mathematical 

methods to obtain the classification of the dedicated 

data set [33,41-43]. 

 

2.4. Random Forest (RF) 

 

Random forest is based on a large number of 

decision trees that constructs a community decision 

system. Each decision tree in a community 

demonstrates the class forecast and final decision is 

determined by voting according to majority. 

Random forests are proposed in order to eliminate 

the over-fitting problems of decision trees. The basic 

idea behind of random forest is constructing the 

common decision of different models which exhibits 

more successful classification success compared to 

the only one classifier. Here, two main concepts are 

important. It is expected that each individual tree is 

constructed through low correlated models in a 

random forest and high classification success. The 

main reason behind of this expectation is to interfere 

individual errors of each tree from each other by 

reducing relation between models. In this work, the 

number of individual trees is set to 25 due to its 

superior performance compared to 10, 50, 75, and 

100 of trees [34-35,44-46]. 

 

2.5. Convolution Neural Network (CNN) 

 

Convolutional neural network is a type of deep 

neural networks, mostly applied especially in image 

processing field. CNNs exhibits notable 

classification results in natural language processing, 

financial time series, video processing and are also 

popular in these domains. The name this network 

model comes from the series of mathematical 

process named as convolution and is a type of 

customized linear operations. CNN is mainly 

constructed with input layer, multiple hidden layers, 

and output layer. Hidden layers of CNN are 

comprised from the sets of convolutional layers that 

rely on a convolution instead of matrix 

multiplication in at least one of their layers. CNN 

methodology includes a set of convolutional layers 

intertwined with pooling layers, followed up several 

fully connected layers. During this procedure, the 

most significant layer is the convolution layer that 

implement a filter of convolution to input in order to 

attain a feature map of input data. In order to get 

multiple features, multiple filters are carried out 

during training process and filters are capable to 

define the context of an investigated problem. After 

that, convolution process is implemented to acquire 

feature maps which indicates dependencies among 

features, local features of data set. Then, pooling 

layers that are intertwined with convolutional layers 

are acted to decrease the number of instances in each 

feature map and keep the most significant 

information about data. Through down sampling 

characteristic, the decrease in training time of the 

system and dimension reduction of data set are 

provided. There are several kinds of pooling layers 

such as max pooling, average pooling, global max 

pooling, global average pooling. In this work, 

maximum pooling is utilized which is generally also 

employed in literature studies. Actually, feature 

extraction is performed through convolution and 

pooling layers until this step. After, the output of 

pooling layers is converted nx1 dimensional vector 

in order to feed fully connected layers which is 

called flattening. Then, final decision of the system 

is determined by the help of fully connected layers. 

In CNN architecture like other deep neural networks, 

there are too many methods to avoid over-fitting 

challenge such as regularization models, early 

stopping criteria. In this study, we use dropout, L2 

regularizator, and early stopping criteria for this 

purpose [33, 35, 47-55]. 

 



Aybike URAL YALÇIN, Zeynep Hilal KİLİMCİ/ IJCESEN 7-3(2021)156-163 

 

159 

 

3. Proposed Framework 

 

3.1. Data Preparation 

 
In this part, data preparation is introduced. Figure 1 

shows the schematic view of the canonical spiral 

which is composed of a torus with a gap 𝑔 =
0.9 𝑚𝑚 and two rods residing from edges of the gap 

in opposite directions perpendicular to the plane of 

the torus. The outer radius of torus is 𝑟𝑜𝑢𝑡 = 2 𝑚𝑚 

and torus thickness 𝑟 = 0.8 𝑚𝑚; two legs are of 

length 𝑙 = 2 𝑚𝑚. The thickness of the torus is kept 

fixed, while the gap size, radius of the torus and the 

length of the legs is varying. In data gathering 

process, three gap sizes are used between 0.9 𝑚𝑚 

and 1.1 𝑚𝑚. For each gap size, we are changing the 

length of the rods and the radius of the torus between 

2 𝑚𝑚 and 3 𝑚𝑚 with a step size 0.1 𝑚𝑚. 

 

 
 
Figure 1. The canonical spiral has gap 𝑔, length of the 

rods 𝑙, thickness 𝑟, and outer radius of the torus is 𝑟0. 

Four orientations i-iv of the canonical spiral with 

respect to E, B field and the propagation direction of the 

incident plane wave. 

 

The structure is taken as perfect electric conductor 

(PEC). The embedding environment is taken as air. 

A plane wave travelling along +x-axis is incident on 

the structure where the electric field is linearly 

polarized along y-axis, and the magnetic field is 

along z-axis. The resonant frequency response of the 

canonical spiral is obtained analyzing the 

transmission (S21 dB) spectrum between 5 −
11 𝐺𝐻𝑧. The four possible orientations of the 

canonical spiral with respect to the incident EM 

wave is examined and their resonance response is 

used in classification. The simulations are computed 

in CST Microwave studio software, which uses 

finite element methods, in frequency domain solver. 

The EM wave is excited defining ports and relevant 

boundary conditions 

 

3.2. Model 

 
In this work, we focus on the estimating resonance 

frequency of chiral metamaterial by employing both 

traditional machine learning models and a deep 

learning algorithm. For this purpose, naive Bayes 

(NB), support vector machine (SVMs), decision 

trees (DTs), random forests (RFs) are evaluated as 

machine learning algorithms and convolutional 

neural networks (CNNs) are appraised as a deep 

learning model in order to estimate of chiral 

metamaterial resonance. To demonstrate the 

efficiency of proposed design, we collect two data 

sets (dataset1, dataset2) that contain 1,210 and 

2,057 instances, respectively. The number of 

features and class labels are the same for both data 

sets. Features evaluated in the training procedure are 

length of the rods, outer radius of torus, thickness of 

torus, gap, orientation in millimeters. Resonance 

frequency is located as class label in giga hertz. The 

main objective of our study is assigning resonance 

frequency of unseen/unlabeled instances in the data 

set by training model through machine learning 

algorithms and a deep learning model. In order to 

prepare data set for training procedure, there are 

some adaptations by converting categorical values 

into numerical ones such as orientation attribute. 

Moreover, class label is scaled per 0.05 precision 

starting from 0 to 1 corresponding to canonical spiral 

designs with a resonance frequency classes 5 −
11 𝐺𝐻𝑧 with a stepsize 0.05. After that, the data set 

is randomly splitted into training and test sets by 

varying training set size as 80, 50, 30,10. The 

remainings are carried out as test set percentages. To 

achieve a reliable prediction, the holdout process is 

recurred 10 times and an overall accuracy is 

calculated by taking averages of each iteration. In the 

tables, the following abbreviations are employed. 

Ts: Training set size, NB: Naive Bayes algorithm, 

SVM: Support vector machine, DT: Decision tree, 

RF: Random Forest algorithm, CNN: Convolutional 

neural network. The best classification results are 

exhibited in boldface in the tables. Furthermore, 

accuracy is appraised as an evaluation metric. In 

Figure 2, the proposed framework is presented. 

 

 
 
Figure 2. The canonical spiral geometrical parameters 

and its orientation given as input to the convolution plus 

pooling layers, as output we get the resonance frequency 

which corresponds to a dip in the transmission spectrum. 

 

4. Experiment Results 
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Firstly, the effect of conventional machine learning 
algorithms is investigated on frequency prediction of 
chiral metamaterials. Then, convolutional neural 
networks are evaluated in order to observe the 
impact a deep learning model on this classification 
task. Table 1 and Table 3 demonstrates the 
classification accuracies of machine learning models 
and deep learning model on both data sets in terms 
of training set percentages. First of all, it is clearly 
observed in Table 1 and Table 3 that the usage of 
ts80 boosts the classification accuracy of each 
model. The poorest classification performance is 
exhibited at ts10 because the data set allocated for 
training is very small. As the training set percentage 
increases, classification accuracy of the system is 
enhanced as expected. For this reason, the setting of 
training set percentage to 80 is an effective way 
when system performance is considered. 

In Table 1, the resonance frequency classification 
results of each algorithm are presented on dataset1 
by varying training set sizes. When the average 
results are considered, the best classification 
accuracy is achieved with 51.76% of accuracy at 
ts80. It is followed by 50.07%, 48.74%, 43.48% of 
accuracies at ts50, ts30, and ts10, respectively. At 
ts80, CNN as a deep learning model outperforms all 
traditional machine learning algorithms by reaching 
58.29% of accuracy level. This means that CNN 
exhibits an outstanding classification performance 
when both conventional machine learning models 
and mean classification success of the system are 
considered. The classification performance of each 
model is ordered at ts80 as CNN, RF, SVM, NB, DT 
with 58.29%, 54.45%, 54.22%, 53.70%, 38.15% of 
accuracies, respectively. This indicates that CNN 
has shown approximately an increase of at least 4% 
in classification performance compared to the best 
conventional machine learning classifier RF. 
Considering the poorest classification performance 
of the machine learning algorithm DT, CNN 
displays nearly a maximum 10% increase in 
classification success. If a deep learning algorithm 
was not included in the proposed system, the random 
forest method as a machine learning model would be 
the ideal method for this resonance frequency 
classification task. In Table 2, all evaluation metrics 
are demonstrated in order to observe the success of 
classifiers. In Table 3, the resonance frequency 
classification accuracies of each method are 
exhibited on dataset2 by changing training set 
percentages. We observe the significant 
improvement when data set is extended by gathering 
more instances in classification accuracies of CNN 
model. While the best classification algorithm 
presents 58.29% of accuracy on dataset1, CNN 
performs 68.77% of accuracy at the same training set 
size. success for CNN is arisen from the extended 
version Approximately, 10% enhancement in 

Table 1. Classification accuracies of each model on 

dataset1 in terms of training set percentages 

Models 
Training Set Percentages (ts) 

ts80 ts50 ts30 ts10 

CNN 58.29 56.05 55.12 49.50 

SVM 54.22 53.85 52.46 47.17 

DecTree 38.15 36.56 35.09 29.00 

NavieBayes 53.70 50.11 49.20 44.82 

Random 

Forest 
54.45 53.78 51.84 46.90 

Average 51.76 50.07 48.74 43.48 

 

Table 2. The results of evaluation metrics on dataset1 at 

ts80. 

Models 
Evaluation Metrics 

Accuracy F-measure Precision Sensitivity 

CNN 58.29 65.44 62.13 68.75 

SVM 54.22 60.85 57.02 65.80 

DecTree 38.15 33.67 30.33 38.24 

NavieBayes 53.70 59.38 57.25 63.72 

Random 
Forest 

54.45 61.74 61.16 60.98 

Average 51.76 56.22 53.58 59.50 

 

classification of data set when the same experimental 
settings are taken into account. The similar 
classification performance order is observed on 
dataset2 as CNN> RF> SVM> NB> DT at ts80. On 
dataset2 at ts80, a minimum of 13% enhancement 
and a maximum of 22% improvement is observed 
when the classification performances of RF and DT 
are considered, respectively. As a result of Table 1 
and Table 3 on both data sets, CNN as a deep 
learning algorithm performs superior classification 
performance while DT as a machine learning 
algorithm performs the poorest resonance frequency 
classification success. In Table 4, all evaluation 
metrics are indicated to observe the performance of 
classifiers. 

Table 3. Classification accuracies of each model on 

dataset2 in terms of training set percentages 

Models 
Training Set Percentages (ts) 

ts80 ts50 ts30 ts10 

CNN 68.77 66.10 61.53 55.40 

SVM 54.91 54.05 47.64 39.00 

DecTree 46.42 45.11 38.88 32.56 

NavieBayes 52.20 50.32 45.09 37.91 

Random 

Forest 
55.84 54.72 49.36 42.55 

Average 55.63 54.06 48.50 41.48 
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Table 4. The results of evaluation metrics on dataset2 at 

ts80. 

Models 
Evaluation Metrics 

Accuracy F-measure Precision Sensitivity 

CNN 68.77 76.51 73.04 80.59 

SVM 54.91 59.27 56.75 64.82 

DecTree 46.42 40.05 38.27 47.33 

NavieBayes 52.20 57.78 55.15 65.10 

Random 

Forest 
55.84 61.42 60.09 69.71 

Average 55.63 59.01 56.66 65.51 

 

Figure 3 demonstrates training-validation loss and 

training-validation accuracy values of the best model 

CNN at ts80 in terms of epoch sizes on dataset2. As 

the number of epoch size increases, both training 

loss and test loss vary up to a certain epoch value 

which is 80 in this study.  

 

Figure 3. Training-validation loss and training-

validation accuracy results of CNN model at ts80 in 

terms of epoch size on dataset2. 

 
The training procedure can be stopped after this 

stage as no changes are observed in the subsequent 

increases in the number of attempts. Moreover, over-

fitting problem is handled employing early stopping 

criterion, dropout function, and L2 regularization as 

seen in Figure 1. This means the proposed model is 

trained with CNN method on dataset2 without any 

over-fitting challenge. 
 

5. Conclusion and Discussion 
 

In this work, we concentrate on the estimation of 

chiral metamaterial resonance by comparing the 

classification performance of both conventional 

machine learning models and convolutional neural 

networks as deep learning model. For this purpose, 

convolutional neural networks, support vector 

machines, naive Bayes, decision trees, random 

forests are employed for the classification of 

resonance frequency. Comprehensive experiments 

are carried out by varying training set percentages, 

epoch sizes, and data sets. Experiment results 

demonstrate that the usage of CNN as a deep 

learning model exhibits superior classification 

success in resonance frequency compared to the 

traditional machine learning algorithms. Depending 

on the application, the resonant structure can be 

designed by its geometrical parameters and relative 

positioning in the electromagnetic field. In future, 

we plan to investigate the impact of various deep 

learning algorithms on frequency of chiral 

metamaterial resonance and relative importance of 

design parameters on the resonance frequency. 

 

Author Statements: 

 

 The authors declare that they have equal right on 

this paper. 

 The authors declare that they have no known 

competing financial interests or personal 

relationships that could have appeared to 

influence the work reported in this paper 

 The authors declare that they have nobody or no-

company to acknowledge. 

 

 

References 
 

[1] Lord Kelvin, in Baltimore Lectures on Molecular 

Dynamics and the Wave Theory of Light, Clay and 

Sons: London, 1904, p. 449. 

[2] Barron, Laurence D. Molecular light scattering and 

optical activity. Cambridge University Press,2004. 

[3] Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-

Nasser, S. C., Schultz, S. "Composite medium with 

simultaneously negative permeability and 

permittivity." Physical review letters 84.18 (2000), 

4184. 

[4] Zhao, R., Zhang, L., Zhou, J., Koschny, T., Soukoulis, 

C. M. "Conjugated gammadion chiral metamaterial 

with uniaxial optical activity and negative refractive 

index." Physical Review B, 83.3 (2011): 035105. 

[5] Wang, B., Zhou, J., Koschny, T., Soukoulis, C. M. 

"Nonplanar chiral metamaterials with negative 

index." Applied Physics Letters 94.15 (2009): 

151112.  

[6] Zhou, J., Dong, J., Wang, B., Koschny, T., Kafesaki, 

M., Soukoulis, C. M. "Negative refractive index due 

to chirality." Physical Review B 79.12 (2009): 

121104. 

[7] Kenanakis, G., Zhao, R., Stavrinidis, A., 

Konstantinidis, G., Katsarakis, N., Kafesaki, M., 

Economou, E. N. "Flexible chiral metamaterials in 

the terahertz regime: a comparative study of various 

designs." Optical Materials Express 2.12 (2012): 

1702-1712. 

[8] Zhang, S., Park, Y. S., Li, J., Lu, X., Zhang, W., 

Zhang, X. "Negative refractive index in chiral 

metamaterials." Physical review letters 102.2 

(2009): 023901. 



Aybike URAL YALÇIN, Zeynep Hilal KİLİMCİ/ IJCESEN 7-3(2021)156-163 

 

162 

 

[9] Kuwata-Gonokami, M., Saito, N., Ino, Y., Kauranen, 

M., Je_movs, K., Vallius, T., Svirko, Y. "Giant 

optical activity in quasi-two-dimensional planar 

nanostructures." Physical review letters 95.22 

(2005): 227401. 

[10] Dong, J., Zhou, J., Koschny, T., Soukoulis, C. "Bi-

layer cross chiral structure with strong optical 

activity and negative refractive index." Optics 

Express 17.16 (2009): 14172-14179. 

[11] Marqus, R., Medina, F., Ra_i-El-Idrissi, R. "Role of 

bianisotropy in negative permeability and left-

handed metamaterials." Physical Review B 65.14 

(2002): 144440. 

[12] Marqus, R., Mesa, F., Martel, J., Medina, F. 

"Comparative analysis of edge-and broadside-

coupled split ring resonators for metamaterial 

design-theory and experiments." IEEE Transactions 

on antennas and propagation 51.10 (2003): 2572-

2581. 

[13] Huangfu, J., Ran, L., Chen, H., Zhang, X. M., Chen, 

K., Grzegorczyk, T. M., Kong, J. A. "Experimental 

con_rmation of negative refractive index of a 

metamaterial composed of –like metallic patterns." 

Applied Physics Letters 84.9 (2004): 1537-1539. 

[14] Ran, L., Huangfu, J. T., Chen, H. S., Li, Y., Zhang, 

X., Chen, K., Kong, J. A. "Microwave solid- state 

left-handed material with a broad bandwidth and an 

ultralow loss." Physical Review B , 70.7 (2004): 

073102. 

[15] Aydin, K., Li, Z., Hudlika, M., Tretyakov, S. A., 

Ozbay, E. "Transmission characteristics of 

bianisotropic metamaterials based on omega shaped 

metallic inclusions." New Journal of Physics, 9.9 

(2007): 326. 

[16] Jaggard, D. L., Mickelson, A. R., Papas, C. H. "On 

electromagnetic waves in chiral media." Applied 

physics 18.2 (1979): 211-216. 

[17] Tretyakov, S. A., Mariotte, F., Simovski, C. R., 

Kharina, T. G., Heliot, J. P. "Analytical antenna 

model for chiral scatterers: Comparison with 

numerical and experimental data." IEEE 

Transactions on Antennas and Propagation 44.7 

(1996): 1006-1014. 

[18] Saenz, E., Semchenko, I., Khakhomov, S., Guven, 

K., Gonzalo, R., Ozbay, E., Tretyakov, S. "Modeling 

of spirals with equal dielectric, magnetic, and chiral 

susceptibilities." Electromagnetics 28.7 (2008): 476-

493. 

[19] Guven, K., Saenz, E., Gonzalo, R., Ozbay, E., 

Tretyakov, S. "Electromagnetic cloaking with 

canonical spiral inclusions." New Journal of Physics 

10.11 (2008): 115037. 

[20] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf 

and H. Suchowski, "Deep learning for the design of 

nano-photonic structures," 2018 IEEE International 

Conference on Computational Photography (ICCP), 

Pittsburgh, PA, 2018, pp. 1-14, doi: 

10.1109/ICCPHOT.2018.8368462. 

[21] Kiarashinejad, Yashar, et al. "Deep learning reveals 

underlying physics of lightmatter interactions in 

nanophotonic devices." Advanced Theory and 

Simulations 2.9 (2019): 1900088. 

[22] Ma, Wei, Feng Cheng, and Yongmin Liu. "Deep-

learning-enabled on-demand design of chiral 

metamaterials." ACS nano 12.6 (2018): 6326-6334. 

[23] Yao, Kan, Rohit Unni, and Yuebing Zheng. 

"Intelligent nanophotonics: merging photonics and 

artifcial intelligence at the nanoscale." 

Nanophotonics 8.3 (2019): 339-366. 

[24] Peurifoy, John, et al. "Nanophotonic particle 

simulation and inverse design using arti_cial neural 

networks." Science advances 4.6 (2018). 

[25] Malkiel, Itzik, et al. "Plasmonic nanostructure design 

and characterization via deep learning." Light: 

Science Applications 7.1 (2018): 1-8. 

[26] Ma, W., Cheng, F., Xu, Y., Wen, Q., Liu, Y. (2019). 

Probabilistic Representation and Inverse Design of 

Metamaterials Based on a Deep Generative Model 

with SemiSupervised Learning Strategy. Advanced 

Materials, 31(35), 1901111. 

[27] Ahmed, Waqas W., et al. "Deterministic and 

probabilistic deep learning models for inverse 

design of broadband acoustic cloak." Physical 

Review Research 3.1 (2021): 013142. 

[28] Huang, Wei, et al. "Inverse engineering of 

electromagnetically induced transparency in 

terahertz metamaterial via deep learning." Journal of 

Physics D: Applied Physics 54.13 (2021): 135102. 

[29] Tao, Zilong, et al. "Optical circular dichroism 

engineering in chiral metamaterials utilizing a deep 

learning network." Optics Letters 45.6 (2020): 

1403-1406. 

[30] Lininger, Andrew, Michael Hinczewski, and 

Giuseppe Strangi. "General Inverse Design of Thin-

Film Metamaterials with Convolutional Neural 

Networks." arXiv preprint 

arXiv:2104.01952 (2021). 

[31] McCallum, A., Nigam, K." A comparison of event 

models for naive bayes text classification." In 

AAAI-98 workshop on learning for text 

categorization (Vol. 752, No. 1, pp. 41-48),1998. 

[32] Manning, C., Schutze, H. "Foundations of statistical 

natural language processing." MIT press,1999. 

[33] Kilimci, Z. H., Gven, A., Uysal, M., Akyokus, S." 

Mood detection from physical and neurophysical 

data using deep learning models." Complexity, 

2019. 

[34] Kilimci, Z. H., Omurca, S. I." Extended feature 

spaces based classifier ensembles for sentiment 

analysis of short texts." Information Technology and 

Control, 47(3), 457-470, 2018. 

[35] Kilimci, Z. H., Akyokus, S." Deep learning-and word 

embedding-based heterogeneous classifier 

ensembles for text classification." Complexity, 

2018. 

[36] Kilimci, Z. H., Ganiz, M. C. "Evaluation of 

classification models for language processing." In 

2015 International Symposium on Innovations in 

Intelligent SysTems and Applications (INISTA) (pp. 

1-8). IEEE, 2015. 

[37] Joachims T. "Text Categorization with Support 

Vector Machines: Learning with Many Relevant 

Features." In: 10th European Conference on 

Machine Learning; 1998; Chemnitz, Germany: 

pp.137-142. 



Aybike URAL YALÇIN, Zeynep Hilal KİLİMCİ/ IJCESEN 7-3(2021)156-163 

 

163 

 

[38] Burges CJC." A Tutorial on Support Vector 

Machines for Pattern Recognition." In: 3rd 

International Conference on Knowledge Discovery 

and Data Mining; 1998; New York, USA: pp. 121-

167. 

[39] Yang Y, Liu X. "A Re-examination of Text 

Categorization Methods." In: 22nd Annual 

nternational ACM SIGIR Conference on Research 

and Development in Information Retrieval; 1999; 

Berkeley, CA, USA: pp. 42-49. 

[40] Kilimci, Z. H., Akyuz, A. O., Uysal, M., Akyokus, 

S., Uysal, M. O., Atak Bulbul, B., Ekmis, M. A." An 

improved demand forecasting model using deep 

learning approach and proposed decision integration 

strategy for supply chain." Complexity, 2019. 

[41] Quinlan, J. R. (1986)."Induction of decision trees. 

Machine learning." 1(1), 81-106. 

[42] Kilimci, Z. H., Akyokus, S. (2019, July). "The 

analysis of text categorization represented with word 

embeddings using homogeneous classifiers." In 

2019 IEEE International Symposium on Innovations 

in Intelligent SysTems and Applications (INISTA) 

(pp. 1-6). IEEE. 

[43] Kilimci, Z. H., Omurca, S. I. (2017, August). "A 

Comparison of Extended Space Forests for 

Classifier Ensembles on Short Turkish Texts." In 

International Academic Conference on Engineering, 

IT and Artificial Intelligence (pp. 96-104). 

[44] L. Breiman, "Random forests." Machine Learning, 

vol. 45, no. 1, pp. 532, 2001. 

[45] Kilimci, Z. H., Akyokus, S., Omurca, S. I. (2016, 

August). "The effectiveness of homogenous 

ensemble classifiers for Turkish and English texts." 

In 2016 International Symposium on Innovations in 

Intelligent SysTems and Applications (INISTA) (pp. 

1-7). IEEE. 

[46] Kilimci, Z. H., Akyokus, S., Omurca, S. . (2017, 

July). "The evaluation of heterogeneous classifier 

ensembles for Turkish texts." In 2017 IEEE 

International Conference on Innovations in 

Intelligent SysTems and Applications (INISTA) (pp. 

307-311). IEEE. 

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Ha_ner, 

"Gradientbased learning applied to document 

recognition." Proceedings of the IEEE, vol. 86, no. 

11, pp. 22782324, 1998. 

[48] J. Schmidhuber, "Deep learning in neural networks: 

an overview." Neural Networks, vol. 61, pp. 85117, 

2015. 

[49] Y. LeCun, Y. Bengio, and G. Hinton, "Deep 

learning." Nature, vol. 521, no. 7553, pp. 436444, 

2015. 

[50] Tanberk, S., Kilimci, Z. H., Tkel, D. B., Uysal, M., 

Akyoku, S. "A Hybrid Deep Model Using Deep 

Learning and Dense Optical Flow Approaches for 

Human Activity Recognition." IEEE Access, 8, 

19799-19809, 2020. 

[51] Kilimci, Z. H., Akyokus, S." The evaluation of word 

embedding models and deep learning algorithms for 

Turkish text classification." In 2019 4th 

International Conference on Computer Science and 

Engineering (UBMK) (pp. 548-553). IEEE. 

[52] Kilimci, Z. H. "Sentiment Analysis Based Direction 

Prediction in Bitcoin using Deep Learning 

Algorithms and Word Embedding Models." 

International Journal of Intelligent Systems and 

Applications in Engineering, 8(2), 60-65, 2020. 

[53] Kilimci, Z. H. "Borsa tahmini için Derin Topluluk 

Modelleri (DTM) ile finansal duygu analizi." 

Journal of the Faculty of Engineering Architecture 

of Gazi University, 35(2), 635-650, 2020. 

[54] Cevik, F., Kilimci, Z. H."The evaluation of 

Parkinson's disease with sentiment analysis using 

deep learning methods and word embedding 

models." Pamukkale University Journal of 

Engineering Sciences, 27(2), 151-161, 2021. 

[55] Othan, D., Kilimci, Z. H., Uysal, M." Financial 

Sentiment Analysis for Predicting Direction of 

Stocks using Bidirectional Encoder Representations 

from Transformers (BERT) and Deep Learning 

Models." In Proc. Int. Conf. Innov. Intell. Technol., 

vol. 2019, pp. 30-35, 2019. 


