
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 15 NO. 1 PAGE 116–131 (2022)
DOI: HTTPS://DOI.ORG/10.36890/IEJG.963159

Some New Properties of Surfaces Generated
by Null Cartan Curves
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ABSTRACT

In this paper, some special types of surfaces with null Cartan base curve are investigated. The
generating lines of the surfaces are chosen as a linear combination of Cartan frame fields with
non-constant differentiable functions. Firstly, the surfaces whose generating lines have the same
direction of Cartan frame fields B, N and T are examined respectively. As a special case, Gaussian
and mean curvatures of one parameter family of Bertrand curves of a given null Cartan curve and
the singular points of this type of surface are stated. Furthermore, an example is also stated to
explain the obtained results. Then, the surfaces with null Cartan base curve are investigated where
generating lines lie on the planes spanned by {N,B}, {T,B} and {T,N}, respectively. Finally, some
differential geometric properties of these surface are given mainly in three different cases.

Keywords: Cartan frame, Bertrand curve, null Cartan curve.

AMS Subject Classification (2020): Primary: 53A04, ; Secondary: 53A05, 53A10.

1. Introduction

It is known that there are many different situations encountered in curves and surfaces in everyday life. These
situations can be interpreted differently in different branches of science. For example, curves arises naturally
in the motion of a particle in the time t for physicists. Most of these fields of science require the differential
geometry of curves and surfaces. It is possible to consider the differential geometry of curves and surfaces from
two different perspectives. The first is based on the foundations of calculus and is called classical differential
geometry. In general, classical differential geometry is built on the local properties of curves and surfaces. What
is meant by local properties is actually the behavior of the curve or the surface in a neighborhood of a point.
The second one is called global differential geometry. Here, the effects of local properties on the behavior of
the entire curve or surface are investigated. From both perspectives, important results can be revealed and
other fields of science can be shed light on. In this study, both perspectives will take place together and the
differential geometry of some surfaces obtained with the help of Cartan Frame of a given null Cartan curve
will be examined.

The distribution parameter of a timelike ruled surface are obtained which is generated by a timelike straight
line in Frenet trihedron moving along a space-like curve in [11]. Furthermore, the classification of ruled
surfaces is given in a three-dimensional Minkowski space in terms of the second Gaussian curvature, the mean
curvature and the Gaussian curvature in [6]. Then, the ruled surfaces are examined in Minkowski 3-spaces
which satisfy some algebraic equations in terms of the second Gaussian curvature, the mean curvature and
the Gaussian curvature in [7]. For ruled surfaces with lightlike ruling in Minkowski 3-space, using elementary
methods, some characterizations of B-scrolls and the classification (also construction) of finite type surfaces and
surfaces with finite type Gauss map are given in [8]. Considering the relationship between ruled surfaces and
quaternions and even dual quaternions, different studies have emerged. For example in [2], an quaternionic
operator is derived and it is proved that each ruled surface in Euclidean 3 space is obtained by this operator.
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On the other hand, the ruled null surfaces of the principal normal indicatrix of a null Cartan curve in de Sitter
3-space, an important vacuum solution to Einstein’s equations of general relativity with cosmological terms are
investigated in [10]. Moreover, description of the geometry of null curves (Cartan frame, pseudo-arc parameter,
pseudo-torsion, pairs of associated curves) in terms of the curvature of the corresponding plane curves in [9].

In this study, the surfaces which are obtained with null Cartan curves will be examined. These surfaces are
parameterized as follows

M(s, t) = α(s) + t (a(s)T (s) + b(s)N(s) + c(s)B(s)) (1.1)

where a, b, c : I → R are some differentiable functions and α : I → E3
1 is a null Cartan curve. The generating

lines are linear combinations of its Cartan frame fields and non-constant vector fields. We will investigate
some special cases which are summarized in the following table.

Case Generating lines
Type of
generating
lines

Parametrization
of the surface

a(s)=0
b(s)=0 X1(s)=λ1(s)B(s) null M1(s, t)=α(s)+tλ1(s)B(s)

a(s)=0
c(s)=0 X2(s)=λ2(s)N(s) spacelike M2(s, t)=α(s)+tλ2(s)N(s)

b(s)=0
c(s)=0 X3(s)=λ3(s)T (s) null M3(s, t)=α(s)+tλ3(s)T (s)

a(s)=0 X4(s)=N(s)+λ4(s)B(s)
unit
spacelike M4(s, t)=α(s)+t(N(s)+λ4(s)B(s))

b(s)=0 X̃5(s)=λ5(s)T (s)+ 1
2λ5(s)

B(s)
unit
spacelike M̃5(s, t)=α(s)+t(λ5(s)T (s)+ 1

2λ5(s)
B(s))

b(s)=0 X5(s)=λ5(s)T (s)- 1
2λ5(s)

B(s)
unit
timelike M

5
(s, t)=α(s)+t(λ5(s)T (s)- 1

2λ5(s)
B(s))

c(s)=0 X6(s)=λ6(s)T (s)+N(s)
unit
spacelike M6(s, t)=α(s)+t(λ6(s)T (s)+N(s))

Table 1: Surfaces with null Cartan base curve

The aim of this study is to investigate surfaces with null Cartan base curve where generating lines are some
linear combination of Cartan frame fields with non-constant differentiable functions. There cases correspond
to some special family of surfaces. For each case, we obtain characterization (timelike, spacelike or degenerate)
of these surfaces. It is seen that the casual characters of these surfaces sometimes depend on the choice of
non-constant functions generating lines. Firstly, the surfaces with null Cartan base curve are examined whose
generating lines have the same direction of Cartan frame fields B, N and T, respectively. As a special case,
Gaussian and mean curvatures of one parameter family of Bertrand curves of a given null Cartan curve and
the singular points of this type of surface are stated. Moreover, an example is also given to explain the obtained
results. Then, the surfaces with null Cartan base curve are investigated where generating lines lie on the planes
spanned by {N,B}, {T,B} and {T,N}, respectively. The observation of the differential geometric properties of
these surfaces are done mainly in three different cases. The Gaussian and mean curvatures of the surfaces are
obtained for each case.

2. Preliminaries

In this section, we will give the necessary informations to understand the main subject of the study.

Minkowski 3-space is the Euclidean space provided with Lorentzian product

〈−→u ,−→v 〉 = −u1v1 + u2v2 + u3v3 (2.1)

where −→u = (u1, u2, u3), −→v = (v1, v2, v3) ∈ R3. By definition, this product is not positively defined. Instead, this
product classifies the vectors in E3

1 as follows:
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If 〈−→u ,−→u 〉 > 0, 〈−→u ,−→u 〉 < 0 or 〈−→u ,−→u 〉 = 0, then −→u is called a spacelike, timelike or null vector, respectively. For
each −→u ∈ E3

1, the norm of −→u vector is defined

‖−→u ‖ =
√
|〈−→u ,−→u 〉|. (2.2)

If 〈−→u ,−→v 〉 = 0, then −→u and −→v vectors are said to be orthogonal [12].

Let α : I → E3
1 be a null Cartan curve given by the pseudo arc length parameter. Then

T (s) = α
′
(s) (2.3)

is the tangent vector of α. Thus N (s) = α
′′
(s) is the spacelike vector. The binormal vector field B is the unique

null vector field that is orthogonal to N such that

〈T (s) , B (s)〉 = 1. (2.4)

If α is a straight line, then κ(s) = 0 and in other cases κ(s) = 1. In addition,

τ (s) =
〈
N

′
(s) , B (s)

〉
(2.5)

[9].

Theorem 2.1. Let α : I → E3
1 be a null Cartan curve given by pseudo arclength and {T,N,B} be the pseudo orthonormal

frame of the curve α. Then we have the derivative formulas: T
′
(s)

N
′
(s)

B
′
(s)

 =

 0 κ (s) 0
τ (s) 0 −κ (s)
0 −τ (s) 0

  T (s)
N (s)
B (s)

 (2.6)

where T,N,B satisfy following relations:

〈T (s) , T (s)〉 = 〈B (s) , B (s)〉 = 0, (2.7)
〈T (s) , N (s)〉 = 〈N (s) , B (s)〉 = 0, (2.8)
〈N (s) , N (s)〉 = 〈T (s) , B (s)〉 = 1 (2.9)

and κ is the curvature function and τ is the torsion function of the curve α [5].

In this and next sections, we will assume that the given null Cartan curve α : I → E3
1 is not a straight line i.e.

the curvature of the curve α is equal to 1. In that case, the characterization of a null Cartan curve α : I → E3
1

given by pseudo arc length parameter is investigated in terms of its torsion function τ .

Definition 2.1. Let α : I → E3
1 be a null Cartan curve and the curve α∗ : I → E3

1 be given with the same domain
of α. If the line joining the points α∗ (s) and α (s) contains both principal normal vectors of α and α∗ for each
s ∈ I , then it is said that the curve α forms a Bertrand curve couple with the curve α∗.

Let α : I → E3
1 be a null Cartan curve given by pseudo arclength parameter. If the curve α∗ indicates a

Bertrand curve couple of α, then the curve α∗ can be given in the form

α∗ (s) = α (s) + λN (s) (2.10)

where λ is a nonzero real constant. Differentiating of both sides of the above equation with respect to the
pseudo arclength parameter s yields:

d

ds
α∗ (s) = (1 + λτ (s))T (s)− λκ (s)B (s) . (2.11)

Then we obtain 〈
d

ds
α∗ (s) ,

d

ds
α∗ (s)

〉
L

= −2λ (1 + λτ(s)). (2.12)

Therefore, it is seen that there are three different casual character of α∗ depending on the value of the torsion
function τ of the curve α [4].
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Theorem 2.2. Let α : I → E3
1 be a null Cartan curve given by pseudo arclength parameter. If Bertrand curve α∗ of α is

a timelike curve, then the followings are hold

T ∗ (s) =
1 + λτ√
2λ (1 + λτ)

T (s)− λ√
2λ (1 + λτ)

B(s), (2.13)

N∗ (s) = sign(1 + 2λτ)N(s), (2.14)

B∗ (s) =
(1 + λτ)√
2λ (1 + λτ)

T (s) +
λ√

2λ (1 + λτ)
B(s), (2.15)

and

κ∗(s) =
|1 + 2λτ |
2λ (1 + λτ)

, (2.16)

τ∗(s) = −sign(1 + 2λτ)

2λ(1 + λτ)
(2.17)

where {T,N,B} and {T ∗, N∗, B∗} are the pseudo orthonormal frame of the curve α and Frenet frame of the curve α∗ [4].

Theorem 2.3. Let α : I → E3
1 be a null Cartan curve given by pseudo arclength parameter. If Bertrand curve α∗ of α is

a spacelike curve, then the followings are hold

T ∗ (s) =
1 + λτ√
−2λ (1 + λτ)

T (s)− λ

−
√

2λ (1 + λτ)
B(s), (2.18)

N∗ (s) = sign(1 + 2λτ)N(s), (2.19)

B∗ (s) =
(1 + λτ)√
−2λ (1 + λτ)

T (s) +
λ√

−2λ (1 + λτ)
B(s), (2.20)

and

κ∗(s) =
|1 + 2λτ |
−2λ (1 + λτ)

, (2.21)

τ∗(s) =
sign(1 + 2λτ)

−2λ(1 + λτ)
. (2.22)

where {T,N,B} and {T ∗, N∗, B∗} are the pseudo orthonormal frames of the curve α and the curve α∗, respectively [4].

Corollary 2.1. All types (timelike, spacelike or null Cartan) Bertrand couples of a given null Cartan curve with constant
curvature functions have also constant curvature functions [4].

3. Surfaces whose generating lines have same direction of Cartan frame fields

In this section, we will investigate the surfaces with null Cartan base curve whose generating lines have the
same direction of Cartan frame fields B, N and T, respectively. These are the first three cases which are given
in the Table 1.

3.1. Surface with binormal generating direction

In this subsection, we will investigate the surface whose base curve is the null Cartan curve α : I → E3
1 and

the generating line is the null vector field with the same direction of the Cartan frame field B. In this case, the
surface has the following parametric representation

M1(s, t) = α(s) + tλ1(s)B(s) (3.1.1)

where λ1 : I → R is a differentiable function.
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Theorem 3.1. Gaussian curvature K and mean curvature H of timelike surface M1 =M1(s, t) are obtained as

K(s, t) = τ2(s), (3.1.2)
H(s, t) = −τ(s) (3.1.3)

respectively.

Proof. We have found the coefficients of first fundamental forms of theM1(s, t) as E = t2τ2(s)λ1 (s)
2
+ 2tλ′1 (s) ,

F = λ1 (s) and G = 0. Thus we say that EG− F 2 = − (λ1 (s))
2
. Normal vector field of the M1(s, t) surface is

given by
n(s, t) = xT (s) + yN(s) + zB(s). (3.1.4)

Since n ⊥M1
s (s, t) and n ⊥M1

t (s, t), the vector field of the surface M1(s, t) is obtained as follows

n(s, t) = N(s) + tτ(s)λ1 (s)B(s). (3.1.5)

As can be seen from the above equation, the normal vector n(s, t) is the spacelike vector. This implies M1 is
a timelike surface. After computations, we can easily obtain coefficients e, f and g of the second fundamental
form of M1(s, t) as

e = 1− tτ ′(s)λ1 (s)− 2tλ′1 (s)− t2τ3(s)λ1 (s)
2
, (3.1.6)

f = −τ(s)λ1 (s) , (3.1.7)
g = 0. (3.1.8)

Thus, the Gaussian curvature K and mean curvature H of the surface M1(s, t) are

K(s, t) =
eg − f2

EG− F 2
= τ2(s), (3.1.9)

H(s, t) =
Eg − 2Ff +Ge

2(EG− F 2)
= −τ(s) (3.1.10)

respectively.

Remark 3.1. The Gaussian and mean curvature of the surface do not depend on the choice of the differentiable
function λ1. They only depend on the torsion function of null Cartan curve α. The above theorem shows that
the principal curvatures of timelike surface M1 can be found as follows:

k1(s, t) = k2(s, t) = −τ(s). (3.1.11)

Definition 3.1. A point p on a timelike surface M is called quasi-umbilic if the shape operator of M is non-
diagonalizable over C [3].

Corollary 3.1. If null Cartan curve α is a space curve then every point of the surface M1 is quasi-umbilic.

Proof. Using above theorem, we obtain

H2(s, t)−K(s, t) = τ2(s)− τ2(s) = 0 (3.1.12)

for timelike surface M1. This implies that the shape operator is non-diagonalizable over C. Thus, we get the
proof.

For details of the diagonalizability of the shape operator of a timelike surface, the readers are referred to [1].

Remark 3.2. Let α : I → E3
1 be a regular curve, then χ(s, t) = α(s) + tb(s) is called a null scroll if

〈α′(s), α′(s)〉 = 〈b(s), b(s)〉 = 0, 〈α′(s), b(s)〉 = 1. (3.1.13)

Therefore, if the constant function λ1(s) = 1 is taken for surface M1, the surface is obtained as a null scroll.
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3.2. Surface with principal normal generating direction

In this subsection, we will give the surface whose base curve is the null Cartan curve α : I → E3
1 and the

generating line is the spacelike vector field with the same direction of the Cartan frame field N. The parametric
representation of surface is obtained as follows

M2(s, t) = α(s) + tλ2(s)N(s) (3.2.1)

where λ2 : I → R is a differentiable function.

Theorem 3.2. The Gaussian curvature K of the surface M2 =M2(s, t) is

K(s, t) = ε
1

4t2λ2 (s)
2
(1 + tλ2 (s) τ(s))

2 (3.2.2)

such that ε = ±1.

Proof. The coefficients of first fundamental forms of theM2(s, t) are obtained asE = −2tλ2 (s)− 2t2λ22 (s) τ(s) +

t2λ′2 (s)
2
, F = tλ′2 (s)λ2 (s) and G = λ22 (s) . So we obtain that EG− F 2 = −2tλ32 (s) (1 + tλ2 (s) τ(s)) . Since n ⊥

M2
s (s, t) and n ⊥M2

t (s, t), the vector field of the surface M2(s, t) is given as follows

n(s, t) = (1 + λ2 (s) tτ(s))T (s) + tλ2 (s)B(s). (3.2.3)

If we take the vector field n(s, t) as a unit vector, then we get

n(s, t) =
(1 + λ2 (s) tτ)√

2tλ2 (s) (1 + λ2 (s) tτ(s))
T (s) +

tλ2 (s)√
2tλ2 (s) (1 + λ2 (s) tτ(s))

B(s). (3.2.4)

We obtain coefficients e, f and g of the second fundamental form of M2(s, t) as

e =
−2tλ′2 (s) + t2λ22 (s) τ

′(s)√
2tλ2 (s) (1 + λ2 (s) tτ(s))

, (3.2.5)

f =
−λ2 (s)√

2tλ2 (s) (1 + λ2 (s) tτ(s))
, (3.2.6)

g = 0. (3.2.7)

Thus, the Gaussian curvature K of the surface M2(s, t) is

K(s, t) = ε
1

4t2λ2 (s)
2
(1 + tλ2 (s) τ)

2 (3.2.8)

respectively.

Theorem 3.3. The mean curvature H of M2 =M2(s, t) is

H(s, t) = −ε (λ2 (s) tτ
′(s))

4(1 + λ2 (s) tτ(s))
√

2tλ2 (s) (1 + λ2 (s) tτ(s))
(3.2.9)

respectively.

Proof. If the coefficients of first and second fundamental forms are written in the formula of the mean curvature,
then this theorem is proved.

Corollary 3.2. If the torsion is constant, the surface M2(s, t) is minimal surface.

Special Case: If we take λ2(s) = 1 of the surface M2(s, t), then we get one parameter family of Bertrand
curves of null Cartan curve α. The geometric properties of this surface will be discussed in the following.
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Theorem 3.4. Let α : I → E3
1 be a null Cartan curve given by pseudo arclength parameter and {T,N,B} be the pseudo

orthonormal frame of the curve α. Suppose that M̃2 = M̃2 (s, t) is a curve flow such that

M̃2 (s, t) = α (s) + tN(s). (3.2.10)

If t ∈
(−1
τ , 0

)
, then M̃2 is a spacelike regular surface with Gaussian curvature

K(s, t) =
1

4t2 (1 + τ (s) t)
2 (3.2.11)

and the mean curvature
H(s, t) = 0 (3.2.12)

where τ is torsion function of the null Cartan curve α.

Proof. We need to find the coefficients of the first and second fundamental forms of the surface M̃2. By using
derivative formulas of the pseudo orthonormal frame of the curve α and the fact that α′(s) = T (s), we get

∂

∂s
M̃2 (s, t) = (1 + τ (s) t)T (s)− tB(s) (3.2.13)

and
∂

∂t
M̃2 (s, t) = N(s). (3.2.14)

Actually, we have 〈
∂

∂s
M̃2 (s, t) ,

∂

∂s
M̃2 (s, t)

〉
L

= −2t (1 + τ (s) t) > 0 (3.2.15)

since κ = 1 and 〈T, T 〉L = 〈B,B〉L = 0, 〈T,B〉 = 1. According to the assumption we have t ∈
(−1
τ , 0

)
. This

means that the vector field ∂
∂sM̃

2 (s, t) is a spacelike vector field. Let n denotes the unit normal vector of
the surface M̃2. Since ∂

∂sM̃
2 (s, t) and ∂

∂tM̃
2 (s, t) are two spacelike vector fields, the surface normal vector

field should be timelike. We can easily obtain the unique timelike vector field n which is orthogonal to both
∂
∂sM̃

2 (s, t) and ∂
∂tM̃

2 (s, t) as follows

n(s, t) =
1√

−2t (1 + τ (s) t)
[(1 + τ (s) t)T (s) + tB(s)] . (3.2.16)

Now we are ready to find the coefficients of the first and second fundamental form of the spacelike surface
M̃2. Let {E,F,G} and {e, f, g} denote the coefficients of the first and second fundamental form of the M̃2,
respectively. Therefore we find

E =

〈
∂

∂s
M̃2 (s, t) ,

∂

∂s
M̃2 (s, t)

〉
L

= −2t (1 + τ (s) t) , (3.2.17)

F =

〈
∂

∂s
M̃2 (s, t) ,

∂

∂t
M̃2 (s, t)

〉
L

= 0, (3.2.18)

G =

〈
∂

∂t
M̃2 (s, t) ,

∂

∂t
M̃2 (s, t)

〉
L

= 1 (3.2.19)

and

e =

〈
∂2

∂s2
M̃2 (s, t) , n(s, t)

〉
L

= 0, (3.2.20)

f =

〈
∂2

∂s∂t
M̃2 (s, t) , n(s, t)

〉
L

=
−1√

−2t (1 + τ (s) t)
, (3.2.21)

g =

〈
∂2

∂t2
M̃2 (s, t) ,

∂2

∂t2
M̃2 (s, t)

〉
L

= 0. (3.2.22)
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Finally, we find the Gaussian curvature of the spacelike surface

K(s, t) = − eg − f2

EG− F 2
= −
−
(

−1√
−2t(1+τ(s)t)

)2

−2t (1 + τ (s) t)

=
1

4t2 (1 + τ (s) t)
2 (3.2.23)

and the mean curvature

H(s, t) = −1

2

(
eG− 2fF + gE

EG− F 2

)
= 0. (3.2.24)

Corollary 3.3. The spacelike surface M̃2 (s, t) = α (s) + tN(s) is a minimal surface where α : I → E3
1 is a null Cartan

curve with the torsion function τ (s) and t ∈
(−1
τ , 0

)
.

Remark 3.3. The above theorem shows that the principal curvatures of spacelike surface M̃2 can be found as
follows:

k1(s, t) = −k2(s, t) =
1

2t(1 + tτ(s))
. (3.2.25)

Theorem 3.5. Let α : I → E3
1 be a null Cartan curve given by pseudo arclength and {T,N,B} be the pseudo orthonormal

frame of the curve α. Suppose that M̃2 = M̃2 (s, t) is a curve flow such that M̃2 (s, t) = α (s) + tN(s). If t ∈ R− [−1τ , 0],

then M̃2 is a timelike regular surface with Gaussian curvature

K(s, t) = − 1

4t2 (1 + τ (s) t)
2 (3.2.26)

and the mean curvature
H(s, t) = 0 (3.2.27)

where τ is torsion function of the null Cartan curve α.

Proof. With the use of the fact that α′(s) = T (s) and N ′(s) = τ(s)T (s)−B(s), we get〈
∂

∂s
M̃2 (s, t) ,

∂

∂s
M̃2 (s, t)

〉
L

= −2t (1 + τ (s) t) < 0. (3.2.28)

Therefore, ∂
∂sM̃

2 (s, t) is a timelike vector field. Consequently, the unit normal n of the surface is a spacelike
vector field. Since n is orthogonal to both ∂

∂sM̃
2 and ∂

∂tM̃
2, we get

n(s, t) =
1√

2t (1 + τ (s) t)
[(1 + τ (s) t)T (s) + tB(s)] . (3.2.29)

At the same time, the coefficients of the first and second fundamental form of the timelike surface M̃2 are
obtain as follows

E = −2t (1 + τ (s) t) , F = 0, G = 1 (3.2.30)

and
e = 0, f =

−1√
2t (1 + τ (s) t)

, g = 0 (3.2.31)

respectively. Finally, we find the Gaussian curvature of the timelike surface

K(s, t) =
eg − f2

EG− F 2
=

−
(

−1√
−2t(1+τ(s)t)

)2

−2t (1 + τ (s) t)

= − 1

4t2 (1 + τ (s) t)
2 (3.2.32)
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and the mean curvature

H(s, t) =
1

2

(
eG− 2fF + gE

EG− F 2

)
= 0. (3.2.33)

Corollary 3.4. The timelike surface M̃2 (s, t) = α (s) + tN(s) is a minimal surface where α : I → E3
1 is a null Cartan

curve with the torsion function τ (s) and t ∈ R− [−1τ , 0].

Remark 3.4. The above theorem shows that the principal curvatures of timelike surface M̃2 can be found as
follows:

k1(s, t) = −k2(s, t) =
1

2t(1 + tτ(s))
. (3.2.34)

Example 3.1. Let α : I → E3
1 be a null Cartan curve given by pseudo arclength parameter with following

parametric expression
α(s) = (s, cos s, sin s). (3.2.35)

Then the Frenet frame is obtained

T (s) = (1,− sin s, cos s), (3.2.36)
N(s) = (0,− cos s,− sin s), (3.2.37)

B(s) = (−1

2
,−1

2
sin s,

1

2
cos s) (3.2.38)

where κ(s) = 1 and τ(s) = − 1
2 . Suppose that M̃2 = M̃2 (s, t) is a curve flow such that

M̃2 (s, t) = (s, cos s, sin s) + t(0,− cos s,− sin s)

= (s, cos s− t cos s, sin s− t sin s). (3.2.39)

The figure of the surface is given below for t ∈ (0, 2).

Figure 1. The surface is given for t ∈ (0, 2).

If t ∈ (0, 2) , then M̃2 is a spacelike regular surface with Gaussian curvature

K(s, t) =
1

4t2
(
1− 1

2 t
)2 =

1

t2 (t− 2)
2 (3.2.40)

and the mean curvature
H(s, t) = 0. (3.2.41)

Suppose that M̃2 = M̃2 (s, t) is a curve flow such that

M̃2 (s, t) = α (s) + tN(s). (3.2.42)

The figure of the surface is given below for t ∈ (−5, 0) :
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Figure 2. The surface is given for t ∈ (−5, 0).

If t ∈ R− [0, 2], then M̃2 is a timelike regular surface with Gaussian curvature

K(s, t) = − 1

t2 (t− 2)
2 (3.2.43)

and the mean curvature
H(s, t) = 0. (3.2.44)

Remark 3.5. The points M̃2(s, 0) and M̃2(s,− 1
τ ) are the singular points of the surface

M̃2 (s, t) = α (s) + tN(s) (3.2.45)

which is one parameter family of the Bertrand curves of null Cartan curve α.

3.3. Surface with tangent generating direction

In this subsection, we will investigate the surface whose base curve is the null Cartan curve α : I → E3
1 and

the generating line is the null vector field with the same direction of the tangent frame field T. The surface give
the following parametric representation

M3(s, t) = α(s) + tλ3(s)T (s) (3.3.1)

where λ3 : I → R is a differentiable function.

Theorem 3.6. The Gaussian curvature K and mean curvature H of M3 =M3(s, t) are

K(s, t) = 0, (3.3.2)

H(s, t) =
−1

2tλ3 (s)
(3.3.3)

respectively.

Proof. The coefficients of first fundamental forms of the M3(s, t) as follows

E = t2λ23 (s) , F = 0, G = 0. (3.3.4)

Since EG− F 2 = 0, the surface M3(s, t) is degenerate surface. Normal vector field of the M3(s, t) surface is
given by

n(s, t) = xT (s) + yN(s) + zB(s). (3.3.5)

Since n ⊥M3
s (s, t) and n ⊥M3

t (s, t), the vector field of the surface M3(s, t) is obtained as follows

n(s, t) = T (s). (3.3.6)

The coefficients e, f and g of the second fundamental form of M3(s, t) obtained as

e = −tλ3 (s) , f = 0, g = 0. (3.3.7)
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The Weingarten matrix of M3(s, t) is obtained as follows[ −1
tλ3(s)

0
1

tλ2
3(s)(1+tλ′

3(s))
0

]
. (3.3.8)

So, the Gaussian curvature K and mean curvature H of the surface M3(s, t) are

K(s, t) = 0, H(s, t) =
−1

2tλ3 (s)
(3.3.9)

respectively.

4. Surfaces whose generating lines have unit direction and lie on Cartan planes

In this section, we will investigate the surfaces with null Cartan base curve whose generating lines lie on the
planes spanned by {N,B}, {T,B} and {T,N}, respectively. These are the last four cases which are given in the
Table 1.

4.1. Surface with unit spacelike generating direction lie on span{N,B}

In this subsection, we will examine the surface with the null Cartan base curve α : I → E3
1 and whose

generating line is non-constant unit spacelike vector field spanning by the Cartan frame fields N and B. The
surface has the following parametric representation

M4(s, t) = α(s) + t(N(s) + λ4(s)B(s)) (4.1.1)

where λ4 : I → R is a differentiable function.

Theorem 4.1. The Gaussian curvature K of M4(s, t) is

K(s, t) = ε

(
λ24 (s) τ (s) + τ (s) k + λ′4 (s)− 1

)2
(λ24 (s) + 2k) ((t2τ2 (s)− 1)λ24 (s) + 2t (1 + tτ (s)) (λ′4 (s)− 1))

(4.1.2)

such that τ 6= −1
t where

k(s, t) =
t− tλ′4 (s)− tλ24 (s) τ(s)

1 + tτ(s)
(4.1.3)

and ε = ±1.

Proof. The coefficients of first fundamental forms of the M4(s, t) as follows

E = t2λ24 (s) τ
2(s) + 2 (1 + tτ(s)) (tλ′4 (s)− t) , F = λ4 (s) , G = 1. (4.1.4)

and EG− F 2 =
(
t2τ2(s)− 1

)
λ24 (s) + 2t (1 + tτ(s)) (λ′4 (s)− 1) . If τ = −1

t , we obtained that EG− F 2 = 0. So the
surface M4(s, t) is defined as degenerate surface. Therefore we assume that τ 6= −1

t , when defining the surface.
Normal vector field of the M4(s, t) surface is obtained as follows

n(s, t) =
1√

λ24 (s) + 2k
(T (s)− λ (s)N(s) + kB(s). (4.1.5)

where k =
t−tλ′

4(s)−tλ
2
4(s)τ(s)

1+tτ(s) and 〈n, n〉 = ε = ±1. The coefficients e, f and g of the second fundamental form of
M4(s, t) obtained as

e =
1√

λ24 (s) + 2k

(
−λ4 (s) + tλ24 (s) τ

′(s) + tτ(s)λ4 (s)
+tλ′′4 (s) + k

(
tλ′4 (s)− tλ4 (s)− τ2(s)

) ) , (4.1.6)

f =
1√

λ24 (s) + 2k

(
λ24 (s) τ(s) + τ(s)k + λ′4 (s)− 1

)
, (4.1.7)

g = 0. (4.1.8)
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So, the Gaussian curvature K of the surface M4(s, t) obtain as follows

K(s, t) = ε

(
λ24 (s) τ(s) + τ(s)k + λ′4 (s)− 1

)2
(λ24 (s) + 2k) ((t2τ2(s)− 1)λ24 (s) + 2t (1 + tτ(s)) (λ′4 (s)− 1))

(4.1.9)

where ε = ±1.

Theorem 4.2. The mean curvature H of M4(s, t) is obtained as follows:

H(s, t) = ε

tλ′′4 (s)− λ4 (s)− k
(
τ2 (s) + tλ4 (s)− tλ′4 (s)

)
+ tτ (s)λ4 (s) + tτ ′ (s)λ24 (s)

−2λ4 (s)
(
τ (s)λ24 (s) + λ′4 (s) + kτ (s)− 1

)(
4t (λ′4 (s)− 1) (tτ (s) + 1)− 2t2τ (s)

2
λ24 (s)

)√
λ24 (s) + 2k

(4.1.10)

where ε = ±1.

Proof. The proof can be done similar to the previous theorem.

4.2. Surface with unit generating direction which lies on span {T,B}

In this subsection, we will investigate the surface with the null Cartan base curve α : I → E3
1 and whose

generating line is non-constant unit vector field spanning by the Cartan frame fields T and B. There is two
possible subcases.

4.2.1. Surface with unit spacelike generating direction which lies on span {T,B} In this situation, the surface has the
following parametric representation

M̃5(s, t) = α(s) + t(λ5(s)T (s) +
1

2λ5(s)
B(s)) (4.2.1)

where λ5 : I → R is a differentiable function.

Theorem 4.3. Gaussian curvature K and mean curvature H of the spacelike surface M̃5
5 = M̃5

5 (s, t) are

K(s, t) =
1

h2(s, t)

(λ′5(s)
(
−2λ25(s) + 2− 1

λ2
5(s)

)
+ 1

t )
2(

tλ5(s)− 1
2

)2 − (2λ′
5(s)t−1)

2−2
4λ2

5(s)

, (4.2.2)

H(s, t) =

1
h(s,t)

 1
2λ5(s)

(−2λ25(s)λ′5(s) + 1
t + 2λ′5(s)−

λ′
5(s)

λ2
5(s)

)

+
(
−2tλ25(s)λ′′5(s)− 2λ35(s)t+ 2 + 4tλ′5(s) +

λ′′
5 (s)

2λ2
5(s)

) 
(
tλ5(s)− 1

2

)2 − (2λ′
5(s)t−1)

2−2
4λ2

5(s)

(4.2.3)

where
h2(s, t) = −4λ25(s) + 4

(2tλ′5(s) + 1)2

(t− 2tλ5(s))2
. (4.2.4)

Proof. We have found the coefficients of first fundamental forms of the M̃5(s, t) as

E =

(
tλ5(s)−

1

2

)2

− λ′5(s)t− λ′5(s)2t2

λ25(s)
, (4.2.5)

F =
1

2λ5(s)
, (4.2.6)

G = 1. (4.2.7)

Therefore, we obtain

EG− F 2 =

(
tλ5(s)−

1

2

)2

− (2λ′5(s)t− 1)
2 − 2

4λ25(s)
(4.2.8)
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and

e =
1

h(s, t)

[
−2tλ25(s)λ′′5(s)− 2λ35(s)t+ 2 + 4tλ′5(s) +

λ′′5(s)

2λ25(s)

]
, (4.2.9)

g = 0, (4.2.10)

f =
1

h(s, t)
(−2λ25(s)λ′5(s) +

1

t
+ 2λ′5(s)−

λ′5(s)

λ25(s)
) (4.2.11)

where h2(s, t) = −4λ25(s) + 4
(2tλ′

5(s)+1)2

(t−2tλ5(s))2
. Using obtained values of the coefficients of first and second

fundamental forms, we get the proof.

4.2.2. Surface with unit timelike generating direction which lies on span {T,B} In this situation, the surface has the
following parametric representation

M5(s, t) = α(s) + t(λ5(s)T (s)−
1

2λ5(s)
B(s)) (4.2.12)

where λ5 : I → R is a differentiable function.

Theorem 4.4. Gaussian curvature K and mean curvature H of M
5
=M

5
(s, t) are

K = − (λ25(s) + τ)2(2tλ′5(s)− 1)2(1 + 2tλ′5(s) + 2(λ′5(s)t)
2 + λ45(s)t

4 + 2λ25(s)t
2τ + τ2t)

(t2λ25(s) + τt)(2t2λ25(s) + τt+ 2tλ′5(s)− 1)
, (4.2.13)

H = − (−eλ5(s) + 2f)λ5(s)

2(1 + 2tλ′5(s) + 2(λ′5(s)t)
2 + λ45(s)t

4 + 2λ25(s)t
2τ + τ2t)

(4.2.14)

where

e =
1

h(s, t)(t2λ25(s) + τt)

[
(t2λ25(s) + τt)(−λ5(s)τt+ 2tλ′′5(s) +

τ2t−2tλ′
5(s)

λ5(s)
)

+(2tλ′5(s)− 1)(λ5(s) + 2λ′5(s)λ5(s)t+ τ ′t− 2τtλ′
5(s)

λ5(s)

]
, (4.2.15)

f =
1

h(s, t)(t2λ25(s) + τt)
(λ25(s) + τ)(2tλ′5(s)− 1), (4.2.16)

h2(s, t) = 2λ25(s) + λ25(s)
(2tλ′5(s)− 1)2

(t2λ52(s) + τt)2
. (4.2.17)

Proof. We have found the coefficients of first fundamental forms of the M
5
(s, t) as

E =
2tλ′5(s) + 2(λ′5(s)t)

2 + (λ25(s)t+ τt)2

λ25(s)
, (4.2.18)

F = − 1

λ5(s)
, (4.2.19)

G = −1. (4.2.20)

Therefore, we obtain

EG− F 2 = −1 + 2tλ′5(s) + 2(λ′5(s)t)
2 + λ45(s)t

4 + 2λ25(s)t
2τ + τ2t

λ25(s)
. (4.2.21)

Normal vector field of the M
5
(s, t) surface is given by

n(s, t) = xT (s) + yN(s) + zB(s). (4.2.22)

Since n ⊥M5

s(s, t) and n ⊥M5

t (s, t), the vector field of the surface M
5
(s, t) is obtained as follows

n(s, t) =
1

h(s, t)

[
λ25(s)T (s) +

λ5(s)(2tλ
′
5(s)− 1)

t2λ25(s) + τt
N (s) +B(s)

]
(4.2.23)
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where

h2(s, t) = 2λ25(s) + λ25(s)
(2tλ′5(s)− 1)2

(t2λ25(s) + τt)2
. (4.2.24)

The normal vector n(s, t) is spacelike vector field. After computations, we can easily obtain coefficients e, f and
g of the second fundamental form of M

5
(s, t) as

e =
1

h(s, t)(t2λ2(s) + τt)

[
(t2λ2(s) + τt)(−λ2(s)τt+ 2tλ′′(s) + τ2t−2tλ′(s)

λ(s) )

+(2tλ′(s)− 1)(λ(s) + 2λ′(s)λ(s)t+ τ ′t− 2τtλ′(s)
λ(s)

]
, (4.2.25)

f =
1

h(s, t)(t2λ2(s) + τt)
(λ2(s) + τ)(2tλ′(s)− 1), (4.2.26)

g = 0. (4.2.27)

Thus, the Gaussian curvature K and mean curvature H of the surface M
5
(s, t) are

K = − (λ25(s) + τ)2(2tλ′5(s)− 1)2(1 + 2tλ′5(s) + 2(λ′5(s)t)
2 + λ45(s)t

4 + 2λ25(s)t
2τ + τ2t)

(t2λ25(s) + τt)(2t2λ25(s) + τt+ 2tλ′5(s)− 1)
, (4.2.28)

H = − (−eλ5(s) + 2f)λ5(s)

2(1 + 2tλ′5(s) + 2(λ′5(s)t)
2 + λ45(s)t

4 + 2λ25(s)t
2τ + τ2t)

(4.2.29)

respectively.

4.3. Surface with unit spacelike generating direction lie on span {T,N}

In this subsection, we will examine the surface with the null Cartan base curve α : I → E3
1 and whose

generating line is non-constant unit spacelike vector field spanning by the Cartan frame fields T and N. The
surface has the following parametric representation

M6(s, t) = α(s) + t(λ6(s)T (s) +N(s)) (4.3.1)

where λ6 : I → R is a differentiable function.

Theorem 4.5. Gaussian curvature K and mean curvature H of M6 =M6(s, t) are

K(s, t) = −ε 1

t4p4(s, t)
, (4.3.2)

H(s, t) = − 1

2t2p3(s, t)

[
−2λ6(s)− 3λ′6(s)λ6(s)t− 2λ6(s)τ(s)t

+λ′′6(s)t+ λ36(s)t+ τ ′(s)t

]
(4.3.3)

where
p2(s, t) =

2

t
+ 2λ′6(s) + 2τ(s)− λ26(s) 6= 0 (4.3.4)

and ε2 = ±1.

Proof. We have found the coefficients of first fundamental forms of the M6(s, t) as

E = −t2(2
t
+ 2λ′6(s) + 2τ(s)− λ26(s)), (4.3.5)

F = 0, (4.3.6)
G = 1. (4.3.7)

Therefore, we obtain

EG− F 2 = −t2(2
t
+ 2λ′6(s) + 2τ(s)− λ26(s)). (4.3.8)

Normal vector field of M6 surface is given by

n(s, t) = xT (s) + yN(s) + zB(s). (4.3.9)
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Since n ⊥M6
s (s, t) and n ⊥M6

t (s, t), the vector field of the surface M6(s, t) is obtained as follows

n(s, t) = ε
1

p(s, t)
[(1 + λ′6(s) + tτ(s)− tλ26(s))T (s)− λ6(s)N (s) +B(s)] (4.3.10)

where
p2(s, t) =

2

t
+ 2λ′6(s) + 2τ(s)− λ26(s) (4.3.11)

and ε2 = ±1. The normal vector n(s, t) can be spacelike or timelike vector field depending on the value of
p2(s, t). We can easily obtain coefficients e, f and g of the second fundamental form of M(s, t) as

e = ε
1

p(s, t)

[
−2λ6(s)− 3λ′6(s)λ6(s)t− 2λ6(s)τ(s)t

+λ′′6(s)t+ λ36(s)t+ τ ′(s)t

]
, (4.3.12)

f = −ε 1

tp(s, t)
, (4.3.13)

g = 0. (4.3.14)

Thus, the Gaussian curvature K and mean curvature H of the surface M6(s, t) are

K = −ε 1

t4p4(s, t)
, (4.3.15)

H = − 1

2t2p3(s, t)

[
−2λ6(s)− 3λ′6(s)λ6(s)t− 2λ6(s)τ(s)t

+λ′′6(s)t+ λ36(s)t+ τ ′(s)t

]
, (4.3.16)

respectively.

Remark 4.1. If 2
t + 2λ′6(s) + 2τ(s)− 2λ26(s) = 0, we obtained that EG− F 2 = 0. So the surface M6 is defined as

degenerate surface. Therefore we assume that 2
t + 2λ′6(s) + 2τ(s)− 2λ26(s) 6= 0 for above theorem.
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References

[1] Akamine, S.: Behavior of the Gaussian curvature of timelike minimal surfaces with singularities. Hokkaido Mathematical Journal. 48 (3), 537-568
(2019). https://doi.org/10.14492/hokmj/1573722017

[2] Aslan, S., Bekar, M., Yaylı, Y.: Ruled surfaces constructed by quaternions. Journal of Geometry and Physics. 161, (2021).
https://doi.org/10.1016/j.geomphys.2020.104048

[3] Clelland, J.N.: Totally quasi-umbilic timelike surfaces in R2
1 . Asian J. Math. 16(1), 189-208 (2012).
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