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ABSTRACT

We introduce a method to construct parametric surfaces interpolating given finite points and a
curve as a line of curvature in 3-dimensional Euclidean space. We present an existence theorem of
a C0-Hermite interpolation of surfaces possessing the given data. We show that every parameter
curve of a constructed surface is a circular helix if the given curve is a circular helix. The method is
validated with illustrative examples.
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1. Introduction

A line of curvature is a surface curve whose tangent at every point is in a principal direction. This curve
follows a directional flow of the extremum curvatures along the surface [11]. At a non-umblical point there
are two orthogonal principal directions. A surface point is called umbilic if all normal curvatures are the same
at this point. A surface curve is a line of curvature if and only if the surface normals along this curve form a
developable surface [13]. A line of curvature is a crucial characteristic curve on a surface. It is a widely used
tool in surface analysis for presenting variations of the principal direction. The line of curvature can guide
the analysis of surfaces, widely used in Geometric Design, Shape Recognition, polygonization of surfaces and
Surface Rendering [1, 9, 11].

Curves and surfaces have been a long term research topic [5, 10, 13]. Classical theory focuses on classifying
curves on a surface. However, the more interesting problem is to consider the reverse problem : the construction
of surfaces possessing a given curve as a special curve. There is a vast literature on this type of construction
of parametric surfaces through a given curve [2-4, 6-8, 12]. Wang et al. [12] introduced a method to obtain
parametric surfaces with a common geodesic. Li et al. [8] obtained necessary and sufficient conditions for
a curve to be a common line of curvature on a surface pencil. Bayram et al. [2] presented surfaces with a
common asymptotic curve. Bayram [3] constructed surfaces with a common adjoint curve. Recently, Lee et
al. [7] introduced a new method to construct a parametric surface in terms of curves and points placed on 3
dimensional Euclidean space.

In the present paper, we introduce interpolation of surfaces with a given line of curvature. We prove the
existence of a C0-Hermite interpolation of surfaces possessing a given curve as a line of curvature and present
some illustrative examples.
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2. Preliminaries

Let α (s) be a unit speed curve framed by the so called Frenet frame {T (s) , N (s) , B (s)} satisfying the
following relations  T ′ (s)

N ′ (s)
B′ (s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0

 T (s)
N (s)
B (s)

 ,
where κ (s) and τ (s) denotes the curvature and the torsion of α (s), respectively. Due to [12], surfaces possessing
the curve α (s) can be represented parametrically as

M (s, t) = α (s) + f (s, t)T (s) + g (s, t)N (s) + h (s, t)B (s) , (2.1)

where 0 ≤ s ≤ S, 0 ≤ t ≤ T and f (s, t) , g (s, t) and h (s, t) are called marching-scale functions. Note that,

change of marching-scale functions produces new surfaces passing through the curve α (s) .

Definition 2.1. A curve α (s) on the surface M (s, t) is called a parameter curve if there exists a parameter
t0 ∈ [0, T ] such that M (s, t0) = α (s) .

Definition 2.2. Let u be a unit vector tangent to M ⊂ R3 at a point p and S be the shape operator of the surface.
Then the number

k (u) = 〈S (u) , u〉

is called the normal curvature of M in the u direction [10].

Definition 2.3. Let p be a point of M ⊂ R3. The maximum and minimum values of the normal curvature k(u)
of M at p are called the principal curvatures of M at p. The directions in which these extreme values occur are
called principal directions of M at p [10].

Definition 2.4. If a regular connected curve α (s) on M ⊂ R3 is such that for all p ∈ α the tangent line of α is a
principal direction at p, then α is said to be a line of curvature of M [5].

Theorem 2.1. [8] The given curve α (s) is a line of curvature on the surface M (s, t) given by Eqn. (2.1) if and only if
f (s, t0) = g (s, t0) = h (s, t0) ≡ 0,

φ1 (s, t0) = 0, φ2 (s, t0) = λ (s) cos θ, φ3 (s, t0) = λ (s) sin θ,
θ (s) = −

∫ s
s0
τ (u) du+ θ0,

where 0 ≤ s ≤ S, 0 ≤ t0 ≤ T (t0 fixed), λ (s) 6= 0 and
φ1 (s, t0) =

(
∂g
∂s

∂h
∂t −

∂h
∂s

∂g
∂t

)
(s, t0) ,

φ2 (s, t0) =
[
∂h
∂s

∂f
∂t −

(
1− ∂f

∂s

)
∂h
∂t

]
(s, t0) ,

φ3 (s, t0) =
[(
1 + ∂f

∂s

)
∂g
∂t −

∂g
∂s

∂f
∂t

]
(s, t0) .

Remark 2.1. In the last theorem, one can think the function λ (s) as a function controlling the shape of the
surface.

3. Surface interpolation

In this section, we obtain surfaces possessing the given curve and interpolating finite interpolation points in
3 dimensional Euclidean space.

Definition 3.1. [7] Let P1, P2, ..., Pn be different points on E3 and M (s, t) be a surface given by Eqn. (2.1) . For
some different points (si, ti) ∈ R2, we can construct the surface M (s, t) such that M (si, ti) = Pi, i = 1, 2, ..., n.
It is called a surface interpolation associated with the given curve α (s) passing through n-control points
Pi, i = 1, 2, ..., n, simply, C0-Hermite surface interpolation. In particular, {P1, P2, ..., Pm} is called C0-Hermite
data.

Theorem 2.1 can be rewritten as the following.
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Corollary 3.1. The given curve α (s) is a line of curvature on the surface M (s, t) given by Eqn. (2.1) if and only if
f (s, t0) = g (s, t0) = h (s, t0) ≡ 0,

∂g
∂t (s, t0) = λ (s) sin θ, ∂h∂t (s, t0) = −λ (s) cos θ,

θ (s) = −
∫ s
s0
τ (u) du+ θ0,

where 0 ≤ s ≤ S, 0 ≤ t0 ≤ T (t0 fixed), λ (s) 6= 0.

Theorem 3.1. Let P1, P2, ..., Pn be distinct points onE3 andM (s, t) be a surface given by Eqn. (2.1) . IfM (si, ti) = Pi,
i = 1, 2, ..., n, then there exists a unique surface interpolation possessing the given curve as a line of curvature such that
the marching-scale functions are given by

f (s, t) =
n∑
i=1

ai (t− t0)i ,

g (s, t) = (sin θ (s))
n∑
i=1

bi (t− t0)i ,

h (s, t) = − (cos θ (s))
n∑
i=1

bi (t− t0)i ,

θ (s) = −
∫ s
s0
τ (u) du+ θ0,

and ∣∣∣∣∣∣∣∣
g (s1, t1) t1

2
t1

3
... t1

n

g (s2, t2) t2
2

t2
3

... t2
n

. . . . .

g (sn, tn) tn
2

tn
3

... tn
n

∣∣∣∣∣∣∣∣
(sin θ (s))

n∏
i=1

ti
∏

1≤i<j≤n
(ti − tj)

6= 0 (3.1)

or ∣∣∣∣∣∣∣∣
h (s1, t1) t1

2
t1

3
... t1

n

h (s2, t2) t2
2

t2
3

... t2
n

. . . . .

h (sn, tn) tn
2

tn
3

... tn
n

∣∣∣∣∣∣∣∣
− (cos θ (s))

n∏
i=1

ti
∏

1≤i<j≤n
(ti − tj)

6= 0, (3.2)

where 0 ≤ s ≤ S, 0 ≤ t0 ≤ T (t0 fixed), ti = ti − t0, i = 1, 2, ..., n.

Proof. Let P1, P2, ..., Pn be distinct points on the surface M (s, t) and M (si, ti) = Pi, i = 1, 2, ..., n for 0 ≤ t0 <
t1 < t2 < ... < tn ≤ T. Since

M (si, ti) = Pi = α (si) + f (si, ti)T (s) + g (si, ti)N (s) + h (si, ti)B (s) ,

we have  f (si, ti) = 〈Pi − α (si) , T (si)〉 ,
g (si, ti) = 〈Pi − α (si) , N (si)〉 ,
h (si, ti) = 〈Pi − α (si) , B (si)〉 .

Denote f (si, ti) = ci1, g (si, ti) = ci2, h (si, ti) = ci3. Letting
f (s, t) =

n∑
i=1

ai (t− t0)i ,

g (s, t) = (sin θ (s))
n∑
i=1

bi (t− t0)i ,

h (s, t) = − (cos θ (s))
n∑
i=1

bi (t− t0)i ,

we get 
f (si, ti) = a1 (ti − t0) + a2 (ti − t0)2 + ...+ an (ti − t0)n = ci1,

g (si, ti) = b1 (ti − t0) + b2 (ti − t0)2 + ...+ bn (ti − t0)n = ci2,

h (si, ti) = b1 (ti − t0) + b2 (ti − t0)2 + ...+ bn (ti − t0)n = ci3,
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i = 1, 2, ..., n. Denote ti = ti − t0 for i = 1, 2, ..., n and obtain


t1 t1

2
... t1

n

t2 t2
2

... t2
n

. . . .

tn tn
2

... tn
n


 a1
a2
.
an

 =

 c11
c21
.
cn1

 ,


t1 t1

2
... t1

n

t2 t2
2

... t2
n

. . . .

tn tn
2

... tn
n


 b1 sin θ (s)
b2 sin θ (s)

.
bn sin θ (s)

 =

 c12
c22
.
cn2

 ,

t1 t1

2
... t1

n

t2 t2
2

... t2
n

. . . .

tn tn
2

... tn
n


 −b1 cos θ (s)−b2 cos θ (s)

.
−bn cos θ (s)

 =

 c13
c23
.
cn3

 .
Since ti 6= tj for 1 ≤ i < j ≤ n and ti 6= 0, tj 6= 0 for i, j = 1, 2, ..., n

det


t1 t1

2
... t1

n

t2 t2
2

... t2
n

. . . .

tn tn
2

... tn
n

 6= 0,

which implies ai, bi have unique solutions. Eqns. (3.1) and (3.2) quarantees the regularity of the surface given
by Eqn. (2.1) along the given curve α (s) .As a result, there exists a unique surface interpolation passing through
the distinct points P1, P2, ..., Pn and possessing the given curve as a line of curvature.

Theorem 3.2. Let a unit speed circular helix α (s) be a line of curvature on the parametric surface given by Eqn. (2.1)
and assume 

f (s, t) =
n∑
i=1

ai (t− t0)i ,

g (s, t) = (sin θ (s))
n∑
i=1

bi (t− t0)i ,

h (s, t) = − (cos θ (s))
n∑
i=1

bi (t− t0)i ,

θ (s) = −
∫ s
s0
τ (u) du+ θ0,

0 ≤ s ≤ S, 0 ≤ t ≤ T. For a constant t0 ∈ [0, T ] , a curve α (s) =M
(
s, t0

)
on the surfaceM (s, t) is also a circular helix.

Proof. Assume that the conditions of the theorem are satisfied. We write

α (s) =M
(
s, t0

)
= α (s) + f

(
s, t0

)
T (s) + g

(
s, t0

)
N (s) + h

(
s, t0

)
B (s)

and calculate  α′ (s) = c1T (s) + c2N (s) ,
α′′ (s) = d1T (s) + d2N (s) + d3B (s) ,
α′′′ (s) = e1T (s) + e2N (s) + e3B (s) ,

where c1, c2, d1, d2, d3, e1, e2, e3 are constants, implying that the curvature and the torsion of α (s) is constant
and it is also a circular helix on the surface M (s, t) .
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4. Examples

4.1. Example

Consider the unit speed curve α (s) =
(
cos
(√

2
2 s
)
, sin

(√
2
2 s
)
,
√
2
2 s
)

framed by
T (s) =

√
2
2

(
− sin

(√
2
2 s
)
, cos

(√
2
2 s
)
,
√
2
2

)
,

N (s) =
(
− cos

(√
2
2 s
)
,− sin

(√
2
2 s
)
, 0
)
,

B (s) =
√
2
2

(
sin
(√

2
2 s
)
,− cos

(√
2
2 s
)
, 1
)
,

0 ≤ s ≤ 9, with torsion τ (s) = 1
2 . Given the point P1 (1, 2, 3) we will obtain a surface that interpolates α (s) as a

line of curvature and P is a point on this surface. Assume t0 = 0, M (0, 1) = P1 (1, 2, 3) , that is, s1 = 0, t1 = 1.
Letting s0 = 0 we have θ (s) = − s2 . Choosing marching-scale functions as

f (s, t) = a1t, g (s, t) = −b1t sin
s

2
, h (s, t) = −b1t cos

s

2

we obtain a1 = 5
√
2

2 , b1 = −
√
2
2 and

f (s, t) =
5
√
2

2
t, g (s, t) =

√
2

2
t sin

s

2
, h (s, t) =

√
2

2
t cos

s

2
.

Thus, we construct the surface

M1 (s, t) =

((
1−
√
2

2
t sin

s

2

)
cos

(√
2

2
s

)
+
t

2

(
cos

s

2
− 5
)
sin

(√
2

2
s

)
,(

1−
√
2

2
t sin

s

2

)
sin

(√
2

2
s

)
+
t

2

(
5− cos

s

2

)
cos

(√
2

2
s

)
,

√
2

2
s+

t

2

(
5 + cos

s

2

))
,

0 ≤ s ≤ 9, 0 ≤ t ≤ 2, that interpolates α (s) as a line of curvature and P1 is a point on this surface (Fig. 1).

Figure 1. The surfaceM1 (s, t) passing through the point P1 (1, 2, 3) (green in color) and possessing the given curve α (s) as a line of curvature (black in color).

Now, we will find another surface passing through the points P1 (1, 2, 3) , P2 (1, 4, 5) and interpolating the
curve α (s) as a line of curvature. Choosing s1 = s2 = 0, t1 = 1 and t2 = 2, we have

f (s, t) = a1t+ a2t
2, g (s, t) = −

(
b1t+ b2t

2
)
sin

s

2
, h (s, t) = −

(
b1t+ b2t

2
)
cos

s

2
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and calculate a1 = 11
√
2

4 , a2 = −
√
2

4 , b1 = − 3
√
2

4 , b2 =
√
2
4 yielding f (s, t) = 11

√
2

4 t−
√
2
4 t

2, g (s, t) =
(

3
√
2

4 t−
√
2
4 t

2
)
sin s

2 ,

h (s, t) =
(

3
√
2

4 t−
√
2
4 t

2
)
cos s2 .

Hence, we obtain the surface

M2 (s, t) =

((
1 +

(√
2

4
t2 − 3

√
2

4
t

)
sin

s

2

)
cos

(√
2

2
s

)
+

(
t2

4
− 11t

4
+

(
3t

4
− t2

4

)
cos

s

2

)
sin

(√
2

2
s

)
,(

1 +

(√
2

4
t2 − 3

√
2

4
t

)
sin

s

2

)
sin

(√
2

2
s

)
+

(
11t

4
− t2

4
+

(
t2

4
− 3t

4

)
cos

s

2

)
cos

(√
2

2
s

)
,

√
2

2
s+

11t

4
− t2

4
+

(
3t

4
− t2

4

)
cos

s

2

)
,

0 ≤ s ≤ 9, 0 ≤ t ≤ 4 that interpolates α (s) as a line of curvature and P1 and P2 are points on this surface (Fig.
2).

Figure 2. The surface M2 (s, t) passing through the points P1 (2, 1, 3) , P2 (3, 4, 5) (red in color) and possessing the given curve α (s) as a line of curvature
(black in color).

Example 4.1. Let us consider the circle α (s) = (cos s, sin s, 0) . Its Frenet frame is T (s) = (− sin s, cos, 0) ,
N (s) = (− cos s,− sin s, 0) ,

B (s) = (0, 0, 1) ,

and torsion is τ (s) = 0 since it is a plane curve. Observe that θ (s) = 0. We will construct a surface interpolating
the curve α (s) as a line of curvature and the point P1 (1, 1, 1) . Assume that t0 = 0, s1 = 0 and t1 = 1, that is
M (0, 1) = P1 (1, 1, 1) .We calculate f (s, t) = h (s, t) = t and g (s, t) ≡ 0. Hence, we obtain

M3 (s, t) = α (s) + tT (s) + tB (s)

= (cos s− t sin s, sin s+ t cos s, t) ,

where 0 ≤ s ≤ 2π, −5 ≤ t ≤ 5 (Figure 3).
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Figure 3. The surfaceM3 (s, t) passing through the point P1 (1, 1, 1) (red in color) and possessing the given curve α (s) as a line of curvature (black in color).

Now, using the same curve we construct another surface interpolating α (s) as a line of curvature and
passing through the points P1 (1, 1, 1) and P2 (1, 2, 4) . Suppose now s1 = s2 = 0 and t1 = 1, t2 = 2.After a simple
computation we obtain f (s, t) = t, g (s, t) ≡ 0 and h (s, t) = t2. As a result, we obtain the surface

M4 (s, t) = α (s) + tT (s) + t2B (s)

=
(
cos s− t sin s, sin s+ t cos s, t2

)
,

where 0 ≤ s ≤ 2π, −5 ≤ t ≤ 5 interpolating α (s) as a line of curvature and passing through the points P1 (1, 1, 1)
and P2 (1, 2, 4) (Figure 4).

Figure 4. The surface M4 (s, t) passing through the points P1 (1, 1, 1) , P2 (1, 2, 4) (red in color) and possessing the given curve α (s) as a line of curvature
(black in color).
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5. Conclusion

The present study introduces a method to construct parametric surfaces interpolating given finite points
and a curve as a line of curvature in 3-dimensional Euclidean space. An existence theorem of a C0-Hermite
interpolation of surfaces possessing the given data is expressed. For future studies, there are several open
problems. For example, what happens if two or more surfaces are to be connected? Another possibilty is
to consider to construct surfaces with Bézier, B-Spline or NURBS form for the line of curvature and for the
sweeping blending functions.
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