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Abstract. Geometric algebra is a useful tool to overcome some problems in
kinematics. Thus, the geometric algebra has attracted the attention of many

researchers. In this paper, quaternion operators on curves and surfaces in

Euclidean 3-space are defined by using geometric algebra. These operators
generate the curves or the surfaces from the points, curves or surfaces. Using

quaternion operators, we obtain motions that have orbits along the gener-

ated curve or surface. Also, these motions are expressed as 1-parameter or
2-parameter homothetic motions.

1. Introduction

Kinematics is a research field of geometry to describe the motion of points,
lines and other geometric objects. Thus, kinematics is used in many fields such
as physics, mechanics, robotics and neuroscience. Homothetic motion is one of
the most commonly researched topic in kinematics. 1-parameter and 2-parameter
homothetic motions were researched in Euclidean 3-space E3 [1, 2]. Yaylı gave
homothetic motions in Euclidean 4-space with Hamilton operators [3].

Sir William Rowan Hamilton [4] interpreted the quaternions as an extension to
the complex numbers in 1843. K. Shoemake defined the system of rotation in E3 by
using quaternions [5]. Quaternions are more useful than Euler angles and matrices
in representing of rotations of vectors. Therefore, quaternions have been used in
many fields such as computer graphics, robotics and control theory.

Some problems and difficulties have been encountered in modeling of the math-
ematics of 3-dimensional (3D) kinematics. These difficulties have been tried to
overcome by using quaternions. Bayro-Corrochano [6] used geometric algebra for
the mathematical model of 3D kinematics of eye movements. Then, Leclercq at

2020 Mathematics Subject Classification. 11R52, 53A04, 53A05.
Keywords. Geometric algebra, curves, surfaces, quaternions, rotation matrices, homothetic

motions.

selahattinnaslan@gmail.com-Corresponding author; yayli@science.ankara.edu.tr

0000-0001-5322-3265; 0000-0003-4398-3855.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

39



40 S. ASLAN, Y. YAYLI

al. modeled some movements in 3D kinematics such as rotations, translations and
screw movements [7]. In [8], an isomorphism was given between the algebra of split
semi-quaternions and the Clifford algebra Cl1,0,1. Moreover, semi-Euclidean planar
motion was defined by using the algebra of split semi-quaternions.

Some surfaces were obtained by quaternions or homothetic motions in [9-15].
Some results have been achieved about these surfaces using quaternions. Also,
using quaternions in the shape operator expressed by Darboux frame, we defined
the quaternionic shape operator [16]. Moreover, we used the quaternionic shape
operator in researching of the differential properties of surfaces.

In this study, we define quaternion operators using curves and surfaces in E3.
These operators have allowed us to obtain a quaternionic or a homothetic motion
on each curve and surface in E3. These motions have orbits along curves or surfaces.
Quaternion operator with curve orbit converts a point to a curve or a curve to a
curve. This operator is expressed as 1-parameter homothetic motion. Similarly,
quaternion operator with surface orbit converts a point to a surface, a curve to a
surface, or a surface to a surface. Moreover, quaternion operator with surface orbit
is expressed as 2-parameter homothetic motion. Finally, we give some applications
of the quaternion operators.

2. Preliminaries

In this section, definitions and some algebraic properties of the concepts real
quaternions, homothetic motions and geometric algebra will be given to provide a
background.

The set H = {q = a0 + a1i + a2j + a3k : a0, a1, a2, a3 ∈ R} of real quaternions
is equal to the 4-dimensional vector space R4. Quaternions have a basis {1, i, j, k}
shortly given with some properties as

i2 = j2 = k2 = ijk = −1.

The set of real quaternion is associative and not commutative algebra. 1 is identity
element of H. Scalar and vector component of q are S(q) = a0 ∈ R and V (q) =
a1i+ a2j + a3k ∈ E3, respectively. We can write quaternion q as q = S(q) + V (q).
If S(q) = 0, q is called pure quaternion. Quaternion product ∗ of q = S(q) + V (q)
and p = S(p) + V (p) is defined as

q ∗ p = S(q)S(p)− V (q) · V (p) + S(q)V (p) + S(p)V (q) + V (q)× V (p). (1)

Conjugate, norm, modulus and inverse of q is

q̄ = a0 − a1i− a2j − a3k,

Nq = q̄ ∗ q = a20 + a21 + a22 + a23,

|q| =
√

Nq,

q−1 =
q̄

Nq
, Nq ̸= 0,
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respectively. If Nq = 1, q is called unit quaternion. A unit quaternions can be
written in the trigonometric form as q = cos θ+ sin θv, where v ∈ E3 and ∥v∥ = 1.
Let v1 and v2 be unit vectors in E3 (i.e., pure quaternions), and θ = arccos (v1 · v2),
Thus, the unit quaternion q can be given as

q = v2 ∗ v−1
1 = cos θ + sin θv, (2)

where v =
v1 × v2

∥v1 × v2∥
. ∥ ∥ is the modulus in E3. Unit quaternion q = cos θ+sin θv

rotates the vector v1 to the vector v2 around the axis vector v, see Figure 1. For
further information about real quaternions, see [3-5, 17].

Figure 1. Rotation with unit quaternion

Let p = a0 + a1i + a2j + a3k be a unit quaternion and w be a pure quaternion
(i.e., vector in E3). Linear mapping ϕ can be defined as

ϕ : E3 → E3, ϕ(w) = p ∗w ∗ p−1. (3)

Matrix corresponding to the linear mapping ϕ can be given as

R =

 a20 + a21 − a22 − a23 −2a0a3 + 2a1a2 2a0a2 + 2a1a3
2a0a3 + 2a1a2 a20 + a22 − a21 − a23 2a2a3 − 2a0a1
2a1a3 − 2a0a2 2a0a1 + 2a2a3 a20 + a23 − a22 − a21

 ,

where R is orthogonal since RRT = I and detR = 1. Thus, ϕ represents a rotation
in E3. If unit quaternion p is in the form

p = cos θ + sin θv, (4)

then ϕ(w) rotates the vector w by 2θ [5].
1-parameter homothetic motion in E3 can be given as

y(t) = h(t)A(t)x(t) + c(t), (5)

where y and x are the position vectors of the same point in the fixed space Rı and
the moving space R, respectively. h, A and c are homothetic scalar, orthogonal
matrix and translation vector, respectively. And “t” is homothetic parameter [1,
2].
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Similarly, 2-parameter homothetic motion in E3 can be given as

y(t, s) = h(t, s)A(t, s)x(t, s) + c(t, s), (6)

where y and x are the position vectors of the same point in the fixed space Rı and
the moving space R, respectively. h, A and c are homothetic scalar, orthogonal ma-
trix and translation vector, respectively. And “t and s” are homothetic parameters
[1, 2].

The geometric product of two unit vectors a and b is written as a ∗ b and can
be expressed as a sum of its symmetric and antisymmetric parts

a ∗ b = a · b+ a× b, (7)

where the inner product a · b and the outer product a× b are defined by

a · b =
1

2
(a ∗ b+ b ∗ a), (8)

a× b =
1

2
(a ∗ b− b ∗ a). (9)

The inner product of two vectors is the standard scalar or dot product which results
in a scalar. The outer or wedge product of two vectors is a new quantity we call a
bivector. We think of a bivector as a directed area in the plane containing a and
b, formed by sweeping a along b [6].

3. Quaternion Operators

In this part, we have defined quaternion operators by geometric algebra. By
using this operator, we have obtained some results on the curves and surfaces.

Definition 1. Let a and b be vectors in E3. By using the inner product a · b and
the vectorial product a× b, quaternion operator can be defined as

Q =
1

∥a∥2
(a · b+ a× b) . (10)

The quaternion operator Q converts the vector a to the vector b around the axis
vector a× b in the plane formed by a and b as

Q ∗ a =
1

∥a∥2
(a · b+ a× b) ∗ a (11)

=
1

∥a∥2
(− (a× b) · a+ (a · b)a+ (a× b)× a)

=
1

∥a∥2
((a · b)a+ (a · a) b− (b · a)a)

=
1

∥a∥2
∥a∥2b
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= b,

where a and b are pure quaternion. Using a · b = ∥a∥∥b∥ cos θ and ∥a × b∥ =
∥a∥∥b∥ sin θ in Eq. (10), we get

Q =
1

∥a∥2
(a · b+ a× b)

=
1

∥a∥2

(
∥a∥∥b∥ cos θ + ∥a∥∥b∥ sin θ a× b

∥a× b∥

)
=

∥b∥
∥a∥

(cos θ + sin θv)

= hq.

where q = cos θ + sin θv, h =
∥b∥
∥a∥

and v =
a× b

∥a× b∥
. Thus, quaternion operator Q

can be given as Q = hq.
Hence Eq. (11) can be expressed as

Q ∗ a = hq ∗ a.

Q ∗ a = hq ∗ a can be given in Figure 2.

Figure 2. Quaternion operator

3.1. Quaternion Operator with Curve Orbit.

Theorem 1. Let α(t) and P be a curve and a point in E3, respectively. Quaternion
operator can be given as

Q(t) =
1

∥P∥2
(P · α(t) + P × α(t)) . (12)

Q(t) generates the curve α(t) from the point P as

Q(t) ∗ P = α(t), (13)

where α(t) is the orbit of Q(t) ∗ P and P , α(t) are pure quaternions.
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Proof. The quaternion product of quaternion operatorQ(t) and the pure quaternion
P can be given as

Q(t) ∗ P =
1

∥P∥2
(P · α(t) + P × α(t)) ∗ P (14)

=
1

∥P∥2
((P · α(t))P + (P × α(t))× P )

=
1

∥P∥2
(P · P )α(t)

=
1

∥P∥2
∥P∥2α(t)

= α(t).

Quaternion operator Q(t) generates the curve α(t) from the point P . □

Remark 1. Using P ·α(t) = ∥P∥∥α(t)∥ cos θ(t) and ∥P×α(t)∥ = ∥P∥∥α(t)∥ sin θ(t),
the quaternion operator Q(t) can be given by unit quaternion q(t) = cos θ(t) +

sin θ(t)v(t), where v(t) =
P × α(t)

∥P × α(t)∥
is rotation axis, as

Q(t) =
1

∥P∥2
(P · α(t) + P × α(t))

=
1

∥P∥2
(P · α(t) + ∥P × α(t)∥ P × α(t)

∥P × α(t)∥
)

=
∥α(t)∥
∥P∥

(cos θ(t) + sin θ(t)v(t))

=
∥α(t)∥
∥P∥

q(t). (15)

Thus, Eq. (14) can be given as

Q(t) ∗ P =
∥α(t)∥
∥P∥

q(t) ∗ P. (16)

Theorem 2. Q(t)∗P given in Eq. (13) can be expressed by 1-parameter homothetic
motion in E3 as

Q(t) ∗ P = h(t)R(t)P

where R(t) is the orthogonal matrix satisfying R(t)P = q(t) ∗ P , q(t) =
Q(t)

|Q(t)|
,

h(t) =
∥α(t)∥
∥P∥

is a homothetic scalar and t is homothetic parameter.

Proof. If we take the unit quaternion p = cos θ + sin θv in Eq. (3) as q1(t) =

cos θ(t)
2 + sin θ(t)

2 v(t), we get the orthogonal matrix corresponding to the mapping
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ϕ as

R =

 (cos2 θ
2 + sin2 θ

2 (2v
2
1 − 1) −2 sin θ

2 (cos
θ
2v3 − sin θ

2v1v2) 2 sin θ
2 (cos

θ
2v2 + sin θ

2v1v3)
2 sin θ

2 (cos
θ
2v3 + sin θ

2v1v2) cos2 θ
2 + sin2 θ

2 (2v
2
2 − 1) 2 sin θ

2 (sin
θ
2v2v3 − cos θ

2v1)
2 sin θ

2 (sin
θ
2v1v3 − cos θ

2v2) 2 sin θ
2 (cos

θ
2v1 + sin θ

2v2v3) cos2 θ
2 + sin2 θ

2 (2v
2
3 − 1)

 ,

where v(t) = (v1(t), v2(t), v3(t)). In this case, matrix R(t) performs a rotation by

angle 2
θ(t)

2
= θ(t) of the vector P around the axis v(t). Thus, we can give the

equalities
q(t) ∗ P = ϕ(P ) = R(t)P. (17)

Using these equations and h(t) =
∥α(t)∥
∥P∥

, we get

Q(t) ∗ P = h(t)q(t) ∗ P
= h(t)R(t)P. (18)

It means that Q(t) ∗ P can be expressed as 1-parameter homothetic motion Q(t) ∗
P = h(t)R(t)P in E3.

If we take the point P on the curve α(t) as P = α(t0), then Q(t) ∗ α(t0) =
h(t)R(t)α(t0) can be given in Figure 3.

Figure 3. Quaternion operator with curve orbit

□

Corollary 1. If we take the curve α(t) on a surface M(t, s) , then orbit of motions
obtained in Theorem 1 and Theorem 2 can be confined on M(t, s). Thus, these
operators can allow us to obtain a 1-parameter motion on every surface in E3.

Proposition 1. Let α(t) and β(t) be curves in E3. Quaternion operator Q(t) can
be given as

Q(t) =
1

∥α(t)∥2
(α(t) · β(t) + α(t)× β(t)), (19)

where α(t) and β(t) are position vectors in E3. This quaternion operator converts
the curve α(t) to the curve β(t) as
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Q(t) ∗ α(t) = β(t), (20)

where the curve β(t) is the orbit of Q(t) ∗ α(t). Moreover, Q(t) ∗ α(t) can be given
by 1-parameter homothetic motion as

Q(t) ∗ α(t) = h(t)R(t)α(t), (21)

where R(t) is the orthogonal matrix satisfying R(t)α(t) = q(t) ∗α(t), q(t) = Q(t)

|Q(t)|
,

h(t) =
∥β(t)∥
∥α(t)∥

is a homothetic scalar and t is homothetic parameter.

3.2. Quaternion Operator with Surface Orbit.

Theorem 3. Let M(t, s) and P be a surface and a point in E3, respectively. Quater-
nion operator Q(t, s) can be defined as

Q(t, s) =
1

∥P∥2
(P ·M(t, s) + P ×M(t, s)), (22)

where M(t, s) and P are position vectors in E3. The operator Q(t, s) generates the
surface M(t, s) from the point P as

Q(t, s) ∗ P = M(t, s), (23)

where M(t, s) is the orbit of the Q(t, s) ∗ P and P , M(t, s) are pure quaternions.

Proof. The proof of this theorem is similar to the proof of Theorem 1. □

Remark 2. By using P ·M(t, s) = ∥P∥∥M(t, s)∥ cos θ(t, s) and ∥P ×M(t, s)∥ =
∥P∥∥M(t, s)∥ sin θ(t, s), the quaternion operator Q(t, s) with unit quaternion q(t, s) =
cos θ(t, s) + sin θ(t, s)v(t, s) can be given as

Q(t, s) =
∥M(t, s)∥

∥P∥
(cos θ(t, s) + sin θ(t, s)v(t, s)) (24)

where v(t, s) =
P ×M(t, s)

∥P ×M(t, s)∥
. Eq. (23) can be expressed as

Q(t, s) ∗ P =
∥M(t, s)∥

∥P∥
q(t, s) ∗ P. (25)

Theorem 4. Q(t, s) ∗P given in Eq. (25) can be given by 2-parameter homothetic
motion in E3 as

Q(t, s) ∗ P = h(t, s)R(t, s)P, (26)

where R(t, s) is the orthogonal matrix satisfying R(t, s)P = q(t, s) ∗ P , q(t, s) =
Q(t, s)

|Q(t, s)|
, h(t, s) =

∥M(t, s)∥
∥P∥

is a homothetic scalar, and t, s are homothetic pa-

rameters.

Proof. The proof of this theorem is similar to the proof of Theorem 2. □
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If we take the point P on the surface M(t, s) as P = M(t0, s0), then Q(t, s) ∗
M(t0, s0) = h(t, s)R(t, s)M(t0, s0) can be given in Figure 4.

Figure 4. Quaternion operator with surface orbit

Proposition 2. Let M(t, s) and α(t) be a surface and a curve in E3, respectively.
Quaternion operator Q(t, s) can be defined as

Q(t, s) =
1

∥α(t)∥2
(α(t) ·M(t, s) + α(t)×M(t, s)) (27)

where M(t, s) and α(t) are pure quaternions. The operator Q(t, s) generates the
surface M(t, s) from the curve α(t) as

Q(t, s) ∗ α(t) = M(t, s) (28)

where Q(t, s) ∗ α(t) has the surface orbit M(t, s).

Corollary 2. Q(t, s) ∗ α(t) given in Eq. (28) can be given by 2-parameter homo-
thetic motion in E3 as

Q(t, s) ∗ α(t) = h(t, s)R(t, s)α(t), (29)

where R(t, s) is the orthogonal matrix satisfying R(t, s)α(t) = q(t, s)∗α(t), q(t, s) =
Q(t, s)

|Q(t, s)|
, h(t, s) =

∥M(t, s)∥
∥α(t)∥

is a homothetic scalar, and t, s are homothetic pa-

rameters.

Proposition 3. Let M(t, s) and N(t, s) be surfaces in E3. Quaternion operator
can be defined as

Q(t, s) =
1

∥M(t, s)∥2
(M(t, s) ·N(t, s) +M(t, s)×N(t, s)), (30)

where M(t, s) and N(t, s) are pure quaternions. The operator Q(t, s) generates the
surface N(t, s) from the surface M(t, s) as

Q(t, s) ∗M(t, s) = N(t, s), (31)

where Q(t, s) ∗M(t, s) has the surface orbit N(t, s).
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Corollary 3. Q(t, s) ∗ M(t, s) given in Eq. (31) can be given by 2-parameter
homothetic motion in E3 as

Q(t, s) ∗M(t, s) = h(t, s)R(t, s)M(t, s), (32)

where R(t, s) is the orthogonal matrix satisfying R(t, s)M(t, s) = q(t, s) ∗ M(t, s),

q(t, s) =
Q(t, s)

|Q(t, s)|
, h(t, s) =

∥N(t, s)∥
∥M(t, s)∥

is a homothetic scalar, and t, s are homo-

thetic parameters.

3.3. Applications of Quaternion Operators.

Example 1. Let α(t) = (cos t, sin t, 0) and β(t) = (cos t, sin t, t) be curves in E3.
The quaternion operator Q(t) can be given as

Q(t) =
1

∥α(t)∥2
(α(t) · β(t) + α(t)× β(t))

= 1 + t(sin t,− cos t, 0). (33)

The operator Q(t) converts α(t) to β(t) as

Q(t) ∗ α(t) = (1 + t(sin t,− cos t, 0)) ∗ (cos t, sin t, 0) (34)

= (cos t, sin t, 0) + (0, 0, t)

= (cos t, sin t, t)

= β(t).

By using ∥α(t)∥ = 1, ∥β(t)∥ =
√
1 + t2 and v(t) = (sin t,− cos t, 0), the quaternion

operator can be given by unit quaternion q(t) = cos θ(t) + sin θ(t)v(t) as

Q(t) =
∥β(t)∥
∥α(t)∥

q(t)

=
√

1 + t2(cos θ(t) + sin θ(t)(sin t,− cos t, 0)) (35)

where θ(t) = arccos

(
1√

1 + t2

)
. For p(t) = cos θ(t)

2 +sin θ(t)
2 v(t), the corresponding

matrix R(t) to the linear mapping ϕ can be obtained as

R(t) =

 cos2 θ
2 − sin2 θ

2 (cos 2t) − sin2 θ
2 sin 2t − sin θ cos t

− sin2 θ
2 sin 2t cos2 θ

2 + sin2 θ
2 cos 2t − sin θ sin t)

sin θ cos t sin θ sin t cos θ

 . (36)

Thus, Eq. (34) can be given by the 1-parameter homothetic motion as

Q(t) ∗ α(t) =
√
1 + t2R(t)α(t). (37)
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Example 2. Let α(t) be center curve of the tube surface Tube(t, θ). The tube sur-
face Tube(t, θ) can be given by the surface S(t, θ) = cos θN(t) + sin θB(t) as

Tube(t, θ) = α(t) + r(t)(cos θN(t) + sin θB(t))

= α(t) + r(t)S(t, θ).

In the study of canal surfaces with quaternions [9] Corollary 1, the unit quaternion
q(t, θ) = cos θ+sin θT (t) generates the surface S(t, θ) from the normal vector N(t),
where {T (t), N(t), B(t)} is the Frenet frame of α(t). Using definition of quaternion
operator, unit quaternion operator q(t, θ) can be obtained as

Q(t, θ) =
1

∥N(t)∥2
(N(t) · S(t, θ) +N(t)× S(t, θ))

= (N(t) · (cos θN(t) + sin θB(t)) +N(t)× (cos θN(t) + sin θB(t)))

= (cos θN(t) ·N(t) + sin θN(t)×B(t))

= (cos θ∥N(t)∥2 + sin θT (t))

= cos θ + sin θT (t)

= q(t, θ).

where ∥N(t)∥ = 1. Thus, quaternion operator q(t, θ) generates the surface S(t, θ)
from the normal vector N(t) as

q(t, θ) ∗N(t) = (cos θ + sin θT (t)) ∗N(t)

= cos θN(t) + sin θT (t)×N(t)

= cos θN(t) + sin θB(t)

= S(t, θ),

where S(t, θ) is the surface orbit of q(t, θ) ∗N(t). Thus, tube surface can be given
by quaternion product

Tube(t, θ) = α(t) + r(t)q(t, θ) ∗N(t).

4. Conclusions

In this paper, we define quaternion operators using geometric algebra and classify
these operators according to their orbits (i.e., curves or surfaces). Quaternion
operator with curve orbit generates a curve from a point or a curve. This operator
is given as 1-parameter homothetic motion. Similarly, quaternion operator with
surface orbit generates a surface from a point, a curve or a surface. Quaternion
operator with surface orbit is also expressed as 2-parameter homothetic motion.
Thus, quaternion operators can form a homothetic and a quaternionic motion on
every surface and curve in E3. Finally, we give some examples of the quaternion
operators.
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