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WIJSMAN ASYMPTOTICAL I2-STATISTICALLY EQUIVALENT
DOUBLE SET SEQUENCES OF ORDER η

UǦUR ULUSU AND ESRA GÜLLE

Abstract. In this study, we present notions of Wijsman asymptotical I2-
statistically equivalence of order η, Wijsman asymptotical I2-Cesàro equiva-
lence of order η and Wijsman asymptotical strongly p−I2-Cesàro equivalence
of order η for double set sequences where 0 < η ≤ 1. Also, we investigate some
properties of these notions and some relationships between them.

1. Introduction

Pringshiem [1] introduced the notion of convergence for double sequences. Then,
Mursaleen and Edely [2] studied the notion of statistical convergence. After that,
Das et al. [3] studied the notion of I-convergence for double sequences. Recently,
Bhunia et al. [4], Çolak and Altın [5], Savaş [6] and Altın et al. [7] presented various
type of convergence of order α for double sequences.
Patterson [8] introduced the notion of asymptotical equivalence for double se-

quences. After that, the notions of asymptotical Cesàro equivalence, asymptotical
I-equivalence and asymptotical statistically equivalence for double sequences were
studied by Kavita et al. [9], Hazarika and Kumar [10] and Esi and Açıkgöz [11],
respectively.
To date, a variety of convergence types for set sequences have been studied by

several authors. In this study, the notion of Wijsman convergence which is one
of these types is handled (see, [12, 13, 14]). Several authors extended the notion
of Wijsman convergence to the new notions for double set sequences via using
the notions of statistical convergence, I-convergence and Cesàro summability (see,
[15, 16, 17, 18, 19, 20]).
The notions of asymptotical equivalence in Wijsman sense for double set se-

quences were presented by Nuray et al. [21]. Also, the notions of Wijsman asymp-
totical I2-statistically equivalence andWijsman asymptotical I2-Cesàro equivalence
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for double set sequences were introduced in [22] and [23], respectively. Lately, new
notions of asymptotical equivalence of order α for double set sequences were studied
by Gülle [24].
More study on the concepts of convergence or asymptotical equivalence for real

sequences or set sequences can be found in [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

2. Definitions and Notations

The fundamental definitions and notations required for this study are following.
(see, [1, 3, 8, 12, 13, 14, 21, 22, 23, 25]).
A double sequence (xij) is convergent to L if for ε > 0, there exists a number

Nε ∈ N such that |xij − L| < ε for i, j > Nε.
A family of sets I ⊆ 2N is said to be ideal if
1) ∅ ∈ I, 2) For E,F ∈ I, E ∪ F ∈ I, 3) For E ∈ I and F ⊆ E, F ∈ I.
An ideal I ⊆ 2N is said to be non trivial if N /∈ I and a non trivial ideal I ⊆ 2N

is said to be admissible if {j} ∈ I for j ∈ N.
A non trivial ideal I2 ⊆ 2N×N is said to be strongly admissible if {j} × N and

N× {j} belong to I2 for j ∈ N.
Obviously any strongly admissible ideal is admissible.
Throughout the study, I2 ⊆ 2N×N will be taken as strongly admissible ideal.
Two non negative double sequences (xij) and (yij) are said to be asymptotical

equivalent if

lim
i,j→∞

xij
yij

= 1.

Let X be any non empty set. A function f : N→ 2X is defined by f(n) = Un ∈
2X for each n ∈ N, where 2X is power set of X. The sequence {Un} = (U1, U2, ...),
which is the range’s elements of f , is said to be set sequences.
Let (X, ρ) be a metric space. For any point x ∈ X and any non empty subset U

of X, distance from x to U is defined by

µ(x, U) = inf
u∈U

ρ(x, u).

A double sequence {Uij} is Wijsman convergent to U if for each x ∈ X,

lim
i,j→∞

µ(x, Uij) = µ(x, U).

Throughout the study, we will take (X, ρ) as metric space and Uij , Vij as any
non empty closed subsets of X.
The term µx(Uij , Vij) is defined as follows:

µx(Uij , Vij) =


µ(x, Uij)

µ(x, Vij)
, x 6∈ Uij ∪ Vij

L , x ∈ Uij ∪ Vij .



856 UǦUR ULUSU AND ESRA GÜLLE

Double sequences {Uij} and {Vij} are Wijsman asymptotical equivalent if for
each x ∈ X,

lim
i,j→∞

µx(Uij , Vij) = 1.

Double sequences {Uij} and {Vij} are Wijsman asymptotical I2-equivalent of
multiple L if for each x ∈ X and ε > 0,{

(i, j) ∈ N× N : |µx(Uij , Vij)− L| ≥ ε
}
∈ I2.

Double sequences {Uij} and {Vij} are Wijsman asymptotical I2-statistically
equivalent of multiple L if for each x ∈ X and ε, δ > 0,{

(m,n) ∈ N× N : 1

mn

∣∣∣{i ≤ m, j ≤ n : |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ} ∈ I2.
The set of Wijsman asymptotical I2-statistically equivalent double sequences is

denoted by S(ILW2
).

Double sequences {Uij} and {Vij} are Wijsman asymptotical strongly p − I2-
Cesàro equivalent of multiple L if for each x ∈ X and ε > 0,{

(m,n) ∈ N× N : 1

mn

m,n∑
k,j=1,1

|µx(Uij , Vij)− L|p ≥ ε
}
∈ I2

where 0 < p <∞.
The set of Wijsman asymptotical strongly p − I2-Cesàro equivalent double se-

quences is denoted by C[ILW2
]p.

3. New Notions

In this section, we present notions of Wijsman asymptotical I2-statistically
equivalence of order η, Wijsman asymptotical I2-Cesàro equivalence of order η
and Wijsman asymptotical strongly p−I2-Cesàro equivalence of order η for double
set sequences.

Definition 1. Let 0 < η ≤ 1. Double sequences {Uij} and {Vij} are Wijsman
asymptotical I2-statistically equivalent to multiple L of order η if for each x ∈ X
and ε, δ > 0,{
(m,n) ∈ N× N : 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ} ∈ I2
and we write Uij

IW2 (SηL)∼ Vij, and simply Wijsman asymptotical I2-statistically
equivalent of order η if L = 1.

The class of Wijsman asymptotical I2-statistically equivalent to multiple L of
order η double sequences will be denoted by IW2 (S

η
L).
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Example 2. Let X = R2 and double sequences {Uij} and {Vij} be defined as
following:

Uij :=


{
(x1, x2) ∈ R2 : x21 + (x2 −

ij

2
)2 =

(ij)2

4

}
, if ij = c2 and c ∈ N{

(0, 1)
}

, if not.

and

Vij :=


{
(x1, x2) ∈ R2 : x21 + (x2 +

ij

2
)2 =

(ij)2

4

}
, if ij = c2 and c ∈ N{

(0, 1)
}

, if not.

If we take I2 = If2 , (I
f
2 is the class of finite subsets of N × N), then the double

sequences {Uij} and {Vij} are Wijsman asymptotical I2-statistically equivalent of
order η.

Remark 3. For η = 1, the notion of Wijsman asymptotical I2-statistically equiv-
alence to multiple L of order η coincides with the notion of Wijsman asymptotical
I2-statistically equivalence of multiple L for double set sequences in [22].

Definition 4. Let 0 < η ≤ 1. Double sequences {Uij} and {Vij} are Wijsman
asymptotical I2-Cesàro equivalent to multiple L of order η if for each x ∈ X and
ε > 0, {

(m,n) ∈ N× N :
∣∣∣∣ 1

(mn)η

m,n∑
i,j=1,1

µx(Uij , Vij)− L
∣∣∣∣ ≥ ε

}
∈ I2

and we write Uij
IW2 (CηL)∼ Vij, and simply Wijsman asymptotical I2-Cesàro equiva-

lent of order η if L = 1.

Definition 5. Let 0 < η ≤ 1 and 0 < p < ∞. Double sequences {Uij} and {Vij}
are Wijsman asymptotical strongly p− I2-Cesàro equivalent to multiple L of order
η if for each x ∈ X and ε > 0,{

(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}
∈ I2

and we write Uij
IW2 [CηL]

p

∼ Vij, and simply Wijsman asymptotical strongly p − I2-
Cesàro equivalent of order η if L = 1.

The class of Wijsman asymptotical strongly p−I2-Cesàro equivalent to multiple
L of order η double sequences will be denoted by I2W [CηL]p.
If p = 1, then the double sequences {Uij} and {Vij} are Wijsman asymptotical

strongly I2-Cesàro equivalent to multiple L of order η and we write Uij
IW2 [CηL]∼ Vij ,

and simply Wijsman asymptotical strongly I2-Cesàro equivalent of order η if L = 1.
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Example 6. Let X = R2 and double sequences {Uij} and {Vij} be defined as
following:

Uij :=


{
(x1, x2) ∈ R2 : (x1 + 2)2 + x22 =

1

ij

}
, if ij = c2 and c ∈ N{

(−1, 1)
}

, if not.

and

Vij :=


{
(x1, x2) ∈ R2 : (x1 − 2)2 + x22 =

1

ij

}
, if ij = c2 and c ∈ N{

(−1, 1)
}

, if not.

If we take I2 = If2 , then the double sequences {Uij} and {Vij} are Wijsman
asymptotical strongly I2-Cesàro equivalent of order η.

Remark 7. For η = 1, the notions of Wijsman asymptotical I2-Cesàro equivalence
to multiple L of order η and Wijsman asymptotical strongly I2-Cesàro equivalence to
multiple L of order η coincide with the notions of Wijsman asymptotical I2-Cesàro
equivalence of multiple L and Wijsman asymptotical strongly I2-Cesàro equivalence
of multiple L for double set sequences in [23], respectively.

4. Inclusions Theorems

In this section, we investigate some properties of the new asymptotical equiva-
lence notions that introduced in Section 3 and some relationships between them.

Theorem 8. If 0 < η ≤ γ ≤ 1, then IW2 (S
η
L) ⊆ IW2 (S

γ
L).

Proof. Suppose that 0 < η ≤ γ ≤ 1 and Uij
IW2 (SηL)∼ Vij . For each x ∈ X and ε > 0,

1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣
≤ 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣
and so for δ > 0,{

(m,n) ∈ N× N : 1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ}

⊆
{
(m,n) ∈ N× N : 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ} .
Consequently, by our assumption, we get IW2 (S

η
L) ⊆ IW2 (S

γ
L). �

If we take γ = 1 in Theorem 8, we obtain the following:
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Corollary 9. If double sequences {Uij} and {Vij} are Wijsman asymptotical I2-sta-
tistically equivalent to multiple L of order η, then the double sequences are Wijsman
asymptotical I2-statistically equivalent of multiple L, i.e., IW2 (S

η
L) ⊆ S(ILW2

).

Theorem 10. If 0 < η ≤ γ ≤ 1 and 0 < p <∞, then IW2 [C
η
L]
p ⊆ IW2 [C

γ
L]
p.

Proof. Suppose that 0 < η ≤ γ ≤ 1 and Uij
IW2 [CηL]

p

∼ Vij . For each x ∈ X,

1

(mn)γ

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≤ 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p
and so for ε > 0,{

(m,n) ∈ N× N : 1

(mn)γ

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}

⊆
{
(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}
.

Consequently, by our assumption, we get IW2 [C
η
L]
p ⊆ IW2 [C

γ
L]
p. �

If we take γ = 1 in Theorem 10, we obtain the following:

Corollary 11. If double sequences {Uij} and {Vij} are Wijsman asymptotical
strongly p − I2-Cesàro equivalent to multiple L of order η, then the double se-
quences are Wijsman asymptotical strongly p−I2-Cesàro equivalent of multiple L,
i.e., IW2 [C

η
L]
p ⊆ C[ILW2

]p.

Now, we shall give a theorem that gives a relation between IW2 [C
η
L]
p and IW2 [C

η
L]
q

where 0 < η ≤ 1 and 0 < p < q <∞.

Theorem 12. If 0 < η ≤ 1 and 0 < p < q <∞, then IW2 [C
η
L]
q ⊂ IW2 [C

η
L]
p.

Proof. Assume that 0 < p < q <∞ and Uij
IW2 [CηL]

q

∼ Vij . For each x ∈ X,

1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p < 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣q
and so for ε > 0,{

(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}

⊂
{
(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣q ≥ ε
}
.
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Hence, by our assumption, we get Uij
IW2 [CηL]

p

∼ Vij . Consequently, IW2 [C
η
L]
q ⊂

IW2 [C
η
L]
p. �

Theorem 13. If double sequences {Uij} and {Vij} are Wijsman asymptotical
strongly p − I2-Cesàro equivalent to multiple L of order η, then the double se-
quences are Wijsman asymptotical I2-statistically to multiple L of order γ where
0 < η ≤ γ ≤ 1 and 0 < p <∞.

Proof. Assume that 0 < η ≤ γ ≤ 1 and the double sequences {Uij} and {Vij} are
Wijsman asymptotical strongly p− I2-Cesàro equivalent to multiple L of order η.
For each x ∈ X and ε > 0,
m,n∑

i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥
m,n∑

i,j=1,1

|µx(Uij ,Vij)−L|≥ε

∣∣µx(Uij , Vij)− L∣∣p

≥ εp
∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣

and so

1

εp (mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p
≥ 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣
≥ 1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣.
Then for δ > 0,{

(m,n) ∈ N× N : 1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ}

⊆
{
(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

|µx(Uij , Vij)− L|p ≥ εp δ
}
.

Consequently, by our assumption, we get that the double sequences {Uij} and {Vij}
are Wijsman asymptotical I2-statistically equivalent to multiple L of order γ. �

If we take γ = η in Theorem 13, we obtain the following:

Corollary 14. If double sequences {Uij} and {Vij} are Wijsman asymptotical
strongly p − I2-Cesàro equivalent to multiple L of order η, then the double se-
quences are Wijsman asymptotical I2-statistically equivalent to multiple L of order
η where 0 < η ≤ 1 and 0 < p <∞.
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