Research Article
BibTex RIS Cite

Birinci Sınıf Biyoloji ve Kimya Öğretmen Adaylarının Modern Genetiğe İlişkin Kavramsal Anlama Düzeylerinin Değerlendirilmesi

Year 2023, Issue: 57, 1842 - 1868, 30.09.2023
https://doi.org/10.53444/deubefd.1291712

Abstract

Bu çalışma, birinci sınıf biyoloji ve kimya öğretmeni adaylarının modern genetik öğrenme anlayış düzeylerini değerlendirmeyi amaçlamaktadır. Çalışmada, betimleyici bir tarama modeli kullanılmıştır. Çalışmanın katılımcılarını 18'i biyoloji ve 16'sı kimya olmak üzere toplam 34 katılımcı oluşturmaktadır. Çalışmada, Duncan ve diğerleri (2009) tarafından geliştirilen modern genetik öğrenme progresyonu çerçevesine dayalı çoktan seçmeli maddeler kullanılmıştır. Çerçeve, bilimsel akıl yürütmeden mevcut olmayan akıl yürütmeye kadar beş seviyede puanlanan modern genetik öğrenmeyle ilgili 16 yapıdan oluşacak şekilde ele alınmıştır. Katılımcılardan elde edilen veriler, modern genetik anlama düzeylerini belirlemek için hem nicel hem de nitel olarak analiz edilmiştir. Elde edilen bulgular katılımcıların B (bilgi kaynağı olarak genler), C1 (Proteinler hücrenin işlerini yapar), E (genetik materyalin fiziksel geçişi) ve F1 (genotip fenotip arasındaki ilişki) yapılarından en yüksek puanları aldıklarını göstermiştir. Bununla birlikte, A1 (Genetik bilginin evrenselliği), D (Hücreler farklı genleri ifade eder), F2 (olasılığa dayalı örüntüler), F3 (Moleküler ve Mendel modelleri arasındaki ilişki) ve J (Bir organizmanın yaşamı boyunca gen ifadesi değişebilir) yapılarına yönelik kavramsal anlamalarının oldukça düşük olduğunu göstermiştir. Çalışma, mevcut öğretim yöntemlerinin etkililiği hakkında fikir vermekte ve geleceğin biyoloji ve kimya öğretmenlerini daha iyi hazırlamak için iyileştirmelerin yapılabileceği alanları vurgulamaktadır. Çalışma ayrıca öğrencilerin moleküler, genetik ve mayotik modeller arasındaki ilişkiyi anlamakta zorlandıklarını göstermekte ve öğrencilerin genetik bilgi hakkında bilimsel olarak akıl yürütebilmek için bu modeller arasındaki ilişkiyi anlamaları gerektiğini öne sürmektedir.

References

  • Aliyu, F., & Talib, C. A. (2019). Virtual reality technology: what benefits for Nigerian pre-service chemistry teachers. Asia Proceedings of Social Sciences, 4(3), 66-68. doi:https://doi.org/10.31580/apss.v4i3.856
  • Alonzo, A. C. (2011). Learning progressions that support formative assessment practices. Measurement, 9, 124– 129. doi:https://doi.org/10.1080/15366367.2011.599629
  • Bae, S., Lee, J., & Park, J. (2021). Development of a field-based chemistry experiment teaching model to strengthen pre-service teachers’ competence for teaching chemistry experiments. Asia-Pacific Science Education, 2(7), 522-548. doi:https://doi.org/10.1163/23641177-bja10037
  • Banet, E. & Ayuso, E. (2003). Teaching of biological inheritance and evolution of living beings in secondary school. International Journal of Science Education, 25(3), 373-407. doi:https://doi.org/10.1080/09500690210145716
  • Beattie, R. (2012). Formative queries for the high school biology classroom. Probe Booklet 1. Lincoln-Way East High School, 1-60.
  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. doi:https://doi.org/10.1207/s15326977ea1101_2
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. & Demirel, F. (2012). Bilimsel araştırma yöntemleri. (11. Baskı). Pegem Akademi.
  • Casanoves, M., González, Á., Salvadó, Z., Haro, J., & Novo, M. (2015). Knowledge and attitudes towards biotechnology of elementary education preservice teachers: the first Spanish experience. International Journal of Science Education, 37(17), 2923-2941. doi:https://doi.org/10.1080/09500693.2015.1116718
  • Castro-Faix, M. & Duncan, R. G. (2022). Cross-sectional study of students' molecular explanations of inheritance patterns. Science Education, 106, 412– 447. doi:https://doi.org/10.1002/sce.21692
  • Castro-Faix, M., Todd, A., Romine, W., & Duncan, R. G. (2018). Do alternative instructional approaches result in different learning progressions?. In Kay, J. and Luckin, R. (Eds.) Rethinking Learning in the Digital Age: Making the Learning Sciences Count, 13th International Conference of the Learning Sciences (ICLS) 2018, Volume 2. London, UK: International Society of the Learning Sciences.
  • Çakır, M. & Aldemir, B. (2013). İki aşamalı genetik kavramlar tanı testi geliştirme ve geçerlik çalışması. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8 (16), 335-353.
  • Deutch, C.E. (2018). Mendel or molecules first: what is the best approach for teaching general genetics? The American Biology Teacher, 80 (4), 264-269. https://doi.org/10.1525/abt.2018.80.4.264
  • Donovan, B.M. (2022). Ending genetic essentialism through genetics education. HGG Advances, 3(1), 100058. doi:https://doi.org/10.1016/j.xhgg.2021.100058
  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students' understandings of molecular genetics. Journal of Research in Science Teaching, 44, 938– 959. doi:https://doi.org/10.1002/tea.20186
  • Duncan, R. G., Castro-Faix, M., & Choi, J. (2016). Informing a learning progression in genetics: Which should be taught first, Mendelian inheritance or the central dogma of molecular biology? International Journal of Science and Mathematics Education, 14(3), 445– 472. doi:https://doi.org/10.1007/s10763-014-9568-3
  • Duncan, R. G., Choi, J., Castro-Faix, M., & Cavera, V. L. (2017). A study of two instructional sequences informed by alternative learning progressions in genetics. Science & Education, 26(10), 1115– 1141. doi:https://doi.org/10.1007/s11191-017-9932-0
  • Duncan, R. G., Rogat, A. D. & Yarden, A. (2009). A learning progression for deepening student’ understandings of modern genetics across the 5th- 10thgrades. Journal of Research in Science Teaching, 46(6), 655–674. doi:https://doi.org/10.1002/tea.20312
  • Duschl R. A., Schweingruber H.A., & Shouse A. (Eds.), (2007). Taking science to school: Learning and teaching science in grades K-8. National Academies Press.
  • Elmesky, R. (2012). Building capacity in understanding foundational biology concepts: A K12 learning progression in genetics informed by research on children’s thinking and learning. Research in Science Education, 43(3),1155-1175. doi:https://doi.org/10.1007/s11165-012-9286-1
  • Erdoğan, A., Cerrah Özsevgeç, L. & Özsevgeç, T. (2014). A study on the genetic literacy levels of prospective teachers. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 8(2), 19-37.
  • Etobro, A. B., & Banjoko, S. O. (2017). Misconceptions of genetics concepts among pre-service teachers. Global Journal of Educational Research, 16(2), 121-128. doi:https://doi.org/10.4314/gjedr.v16i2.6
  • Furtak, E. M., Kiemer, K., Circi, R. K., Swanson, R., de León, V., Morrison, D., & Heredia, S. C. (2016). Teachers’ formative assessment abilities and their relationship to student learning: Findings from a four-year intervention study. Instructional Science, 44, 267-291. doi:https://doi.org/10.1007/s11251-016-9371-3
  • Furtak, E.M. & Heredia, S. (2016). A virtuous cycle: the formative assessment design cycle: developing tools in support of the next generation science standards. The Science Teacher, 83(2), 36-41. doi:https://doi.org/10.2505/4/tst16_083_02_36
  • Gericke, N. M., & Wahlberg, S. (2013). Clusters of concepts in molecular genetics: A study of Swedish upper secondary science students' understanding. Journal of Biological Education, 47(2), 73– 83. doi:https://doi.org/10.1080/00219266.2012.716785
  • Gericke, N., El-Hani, C.N., Sbeglia, G.C., Nehm, R.H., & Evangelista, N.A.M. (2021). Is Belief in Genetic Determinism Similar Across Countries and Traits?. In: Haskel-Ittah, M., Yarden, A. (eds) Genetics Education. Contributions from Biology Education Research. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-86051-6_7
  • Güngör, S. N., & Özkan, M. (2017). Evaluation of the concepts and subjects in biology perceived to be difficult to learn and teach by the pre-service teachers registered in the pedagogical formation program. European Journal of Educational Research, 6(4), 495-508. doi:https://doi.org/10.12973/eu-jer.6.4.495
  • Haskel-Ittah, M., & Yarden, A. (2019). Students' conception of genetic phenomena and its effect on their ability to understand the underlying mechanism. CBE—Life Sciences Education, 17(3), ar36. https://doi.org/10.1187/cbe.18-01-0014
  • Jones, L., Jordan, K. D., & Stillings, N. (2005). Molecular visualization in chemistry education: the role of multidisciplinary collaboration. Chemistry Education Research and Practice, 3(6), 136-149. doi:https://doi.org/10.1039/b5rp90005k
  • Karagöz. M., & Çakır, M. (2011). Problem solving in genetics: conceptual and procedural difficulties. Educational Sciences: Theory & Practice, 11(3), 1668-1674.
  • Karasar, N. (2016). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler. (İkinci Yazım, 38.Basım). Nobel Akademik Yayıncılık.
  • Kılıç, D., Taber, K. S., & Winterbottom, M. (2016). A cross-national study of students’ understanding of genetics concepts: implications from similarities and differences in England and Turkey. Education Research International, Article ID 6539626. doi:https://doi.org/10.1155/2016/6539626
  • Knippels, M. C. P., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3). doi: 10.1080/00219266.2005.9655976
  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). Chromosomes: the missing link—young people's understanding of mitosis, meiosis, and fertilization. Journal of Biological Education, 34(4), 189-199. doi:https://doi.org/10.1080/00219266.2000.9655717
  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370-391. doi:https://doi.org/10.1002/tea.20007
  • Machová, M., & Ehler, E. (2021). Secondary school students’ misconceptions in genetics: origins and solutions. Journal of Biological Education, 1-14. doi:https://doi.org/10.1080/00219266.2021.1933136
  • Mamombe, A., Kazeni, M., & De Villiers, R. (2016). Context preferences of educators and learners for studying genetics: A case study in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 20(2), 165-174. doi:https://doi.org/10.1080/18117295.2016.1187509
  • Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205. doi:https://doi.org/10.1080/00219266.2000.9655718
  • MEB (2013). Lise Biyoloji (1-2-3-4) Dersi Öğretim Programı. Milli Eğitim Bakanlığı.
  • MEB. (2018a). Ortaöğretim Biyoloji Dersi Öğretim Programı (9., 10., 11. ve 12. Sınıflar). Milli Eğitim Bakanlığı.
  • MEB. (2018b). Ortaöğretim Fen Lisesi Biyoloji Dersi Öğretim Programı (9., 10., 11. ve 12. Sınıflar). Milli Eğitim Bakanlığı.
  • Öztekin, C., Çapa Aydın, Y., & Yılmaz Tüzün, Ö. (2000). Biyoloji öğretmen adaylarının genel biyoloji konularındaki kavram yanılgıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 140–147.
  • Rodriguez-Becerra, J., Cáceres-Jensen, L., Díaz, T., Druker, S., Bahamonde Padilla, V., Pernaa, J. & Aksela, M. (2020). Developing technological pedagogical science knowledge through educational computational chemistry: a case study of pre-service chemistry teachers’ perceptions. Chemistry Education Research and Practice vol. 21(2), 638-654. doi:https://doi.org/10.1039/C9RP00273A
  • Roseman, J. E., Caldwell, A., Gogos, A. & Kurth, L. (2006). Mapping a coherent learning progression for the molecular basis of heredity. Presented at the National Association for Research in Science Teaching Annual Meeting.
  • Rusmana, A. N., Rachmatullah, A., Nuraeni, E., & Ha, M. (2021). The genetics conceptual understanding of Indonesian and United States undergraduate biology students. Asia-Pacific Science Education, 7(1), 197-225. doi:https://doi.org/10.1163/23641177-bja10024
  • Saka, A., Cerrah, L., Akdeniz, A. R., & Ayas, A. (2006). A cross-age study of the understanding of three genetic concepts: how do they image the gene, DNA and chromosome?. Journal of Science Education and Technology, 15, 192-202. doi:https://doi.org/10.1007/s10956-006-9006-6
  • Schneider, R. M., & Plasman, K. (2011). Science teacher learning progressions: A review of science teachers’ pedagogical content knowledge development. Review of Educational Research, 81(4), 530–565. doi:https://doi.org/10.3102/0034654311423382
  • Shi, J., Wood, W.B., Martin, J.M., Guild, N.A., Vicens, Q., & Knight, J.K. (2010). A diagnostic assessment for introductory molecular and cell biology. CBE Life Sciences Education, 9(4):453-61. doi:https://doi.org/10.1187/cbe.10-04-0055.
  • Smith, M.K & Knight, J.K. (2012). Using the genetics concept assessment to document persistent conceptual difficulties in undergraduate genetics courses. Genetics, 191(1),21-32. doi:https://doi.org/10.1534/genetics.111.137810
  • Stern, F. & Kampourakis, K. (2017). Teaching for genetics literacy in the post-genomic era. Studies in Science Education, 53(2), 193-225. doi:https://doi.org/10.1080/03057267.2017.1392731
  • Tatar, N., & Koray, C.Ö. (2005). İlköğretim sekizinci sınıf öğrencilerinin “genetik” ünitesi hakkındaki kavram yanılgılarının belirlenmesi. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(2), 415- 426.
  • Todd, A. & Romine, W. L. (2016). Validation of the learning progression-based assessment of modern genetics in a college context. International Journal of Science Education, 38(10),1673-1698. doi:https://doi.org/10.1002/sce.21252
  • Todd, A., Romine, W. L., & Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context. Research in Science Education, 49, 569-589. doi:https://doi.org/10.1007/s11165-017-9626-2
  • Todd, A., Romine, W., Sadeghi, R., Cook Whitt, K. & Banerjee, T. (2022). How do high school student’ progression networks change due to genetics instruction and how do they stabilize years after instruction? Journal of Research in Science Teaching, 59, 779-807. doi:https://doi.org/10.1002/tea.21744
  • Tornabene, R. (2018). Measuring Student Understanding of Genetics: Psychometric, Cognitive, and Demographic Considerations, Stony Brook University, ProQuest, LLC.
  • Tsui, C. Y., & Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in Science Education, 33, 111-135. doi:https://doi.org/10.1023/A:1023685706290
  • Uzun, N. & Sağlam, N. (2003). Orta öğretim biyoloji programında genetik konularının değerlendirilmesi ve öğrencilerin genetiğe karşı ilgisinin saptanması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24, 29-136. van Mil, M. H., Postma, P. A., Boerwinkel, D. J., Klaassen, K., & Waarlo, A. J. (2016). Molecular mechanistic reasoning: Toward bridging the gap between the molecular and cellular levels in life science education. Science Education, 100(3), 517– 585. doi:https://doi.org/10.1002/sce.21215
  • Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 35(9), 1031-1055.
  • von Aufschnaiter, C., Alonzo, A., & Kost, D. (2015). Using Learning Progressions to Support Pre-Service Physics Teachers’ Noticing. In Annual International Conference of NARST, Chicago, April (pp. 11-14).
  • Vosniadou, S. (2019). The development of students’ understanding of science. Frontiers in Education, 4(32). doi:https://doi.org/10.3389/feduc.2019.00032
  • Wolyniak, M. J. (2013). Improved student linkage of Mendelian and molecular genetic concepts through a yeast‐based laboratory module. Biochemistry and Molecular Biology Education, 41(3), 163–172. doi:https://doi.org/10.1002/bmb20679
Year 2023, Issue: 57, 1842 - 1868, 30.09.2023
https://doi.org/10.53444/deubefd.1291712

Abstract

References

  • Aliyu, F., & Talib, C. A. (2019). Virtual reality technology: what benefits for Nigerian pre-service chemistry teachers. Asia Proceedings of Social Sciences, 4(3), 66-68. doi:https://doi.org/10.31580/apss.v4i3.856
  • Alonzo, A. C. (2011). Learning progressions that support formative assessment practices. Measurement, 9, 124– 129. doi:https://doi.org/10.1080/15366367.2011.599629
  • Bae, S., Lee, J., & Park, J. (2021). Development of a field-based chemistry experiment teaching model to strengthen pre-service teachers’ competence for teaching chemistry experiments. Asia-Pacific Science Education, 2(7), 522-548. doi:https://doi.org/10.1163/23641177-bja10037
  • Banet, E. & Ayuso, E. (2003). Teaching of biological inheritance and evolution of living beings in secondary school. International Journal of Science Education, 25(3), 373-407. doi:https://doi.org/10.1080/09500690210145716
  • Beattie, R. (2012). Formative queries for the high school biology classroom. Probe Booklet 1. Lincoln-Way East High School, 1-60.
  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. doi:https://doi.org/10.1207/s15326977ea1101_2
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş. & Demirel, F. (2012). Bilimsel araştırma yöntemleri. (11. Baskı). Pegem Akademi.
  • Casanoves, M., González, Á., Salvadó, Z., Haro, J., & Novo, M. (2015). Knowledge and attitudes towards biotechnology of elementary education preservice teachers: the first Spanish experience. International Journal of Science Education, 37(17), 2923-2941. doi:https://doi.org/10.1080/09500693.2015.1116718
  • Castro-Faix, M. & Duncan, R. G. (2022). Cross-sectional study of students' molecular explanations of inheritance patterns. Science Education, 106, 412– 447. doi:https://doi.org/10.1002/sce.21692
  • Castro-Faix, M., Todd, A., Romine, W., & Duncan, R. G. (2018). Do alternative instructional approaches result in different learning progressions?. In Kay, J. and Luckin, R. (Eds.) Rethinking Learning in the Digital Age: Making the Learning Sciences Count, 13th International Conference of the Learning Sciences (ICLS) 2018, Volume 2. London, UK: International Society of the Learning Sciences.
  • Çakır, M. & Aldemir, B. (2013). İki aşamalı genetik kavramlar tanı testi geliştirme ve geçerlik çalışması. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8 (16), 335-353.
  • Deutch, C.E. (2018). Mendel or molecules first: what is the best approach for teaching general genetics? The American Biology Teacher, 80 (4), 264-269. https://doi.org/10.1525/abt.2018.80.4.264
  • Donovan, B.M. (2022). Ending genetic essentialism through genetics education. HGG Advances, 3(1), 100058. doi:https://doi.org/10.1016/j.xhgg.2021.100058
  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students' understandings of molecular genetics. Journal of Research in Science Teaching, 44, 938– 959. doi:https://doi.org/10.1002/tea.20186
  • Duncan, R. G., Castro-Faix, M., & Choi, J. (2016). Informing a learning progression in genetics: Which should be taught first, Mendelian inheritance or the central dogma of molecular biology? International Journal of Science and Mathematics Education, 14(3), 445– 472. doi:https://doi.org/10.1007/s10763-014-9568-3
  • Duncan, R. G., Choi, J., Castro-Faix, M., & Cavera, V. L. (2017). A study of two instructional sequences informed by alternative learning progressions in genetics. Science & Education, 26(10), 1115– 1141. doi:https://doi.org/10.1007/s11191-017-9932-0
  • Duncan, R. G., Rogat, A. D. & Yarden, A. (2009). A learning progression for deepening student’ understandings of modern genetics across the 5th- 10thgrades. Journal of Research in Science Teaching, 46(6), 655–674. doi:https://doi.org/10.1002/tea.20312
  • Duschl R. A., Schweingruber H.A., & Shouse A. (Eds.), (2007). Taking science to school: Learning and teaching science in grades K-8. National Academies Press.
  • Elmesky, R. (2012). Building capacity in understanding foundational biology concepts: A K12 learning progression in genetics informed by research on children’s thinking and learning. Research in Science Education, 43(3),1155-1175. doi:https://doi.org/10.1007/s11165-012-9286-1
  • Erdoğan, A., Cerrah Özsevgeç, L. & Özsevgeç, T. (2014). A study on the genetic literacy levels of prospective teachers. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 8(2), 19-37.
  • Etobro, A. B., & Banjoko, S. O. (2017). Misconceptions of genetics concepts among pre-service teachers. Global Journal of Educational Research, 16(2), 121-128. doi:https://doi.org/10.4314/gjedr.v16i2.6
  • Furtak, E. M., Kiemer, K., Circi, R. K., Swanson, R., de León, V., Morrison, D., & Heredia, S. C. (2016). Teachers’ formative assessment abilities and their relationship to student learning: Findings from a four-year intervention study. Instructional Science, 44, 267-291. doi:https://doi.org/10.1007/s11251-016-9371-3
  • Furtak, E.M. & Heredia, S. (2016). A virtuous cycle: the formative assessment design cycle: developing tools in support of the next generation science standards. The Science Teacher, 83(2), 36-41. doi:https://doi.org/10.2505/4/tst16_083_02_36
  • Gericke, N. M., & Wahlberg, S. (2013). Clusters of concepts in molecular genetics: A study of Swedish upper secondary science students' understanding. Journal of Biological Education, 47(2), 73– 83. doi:https://doi.org/10.1080/00219266.2012.716785
  • Gericke, N., El-Hani, C.N., Sbeglia, G.C., Nehm, R.H., & Evangelista, N.A.M. (2021). Is Belief in Genetic Determinism Similar Across Countries and Traits?. In: Haskel-Ittah, M., Yarden, A. (eds) Genetics Education. Contributions from Biology Education Research. Springer, Cham. doi:https://doi.org/10.1007/978-3-030-86051-6_7
  • Güngör, S. N., & Özkan, M. (2017). Evaluation of the concepts and subjects in biology perceived to be difficult to learn and teach by the pre-service teachers registered in the pedagogical formation program. European Journal of Educational Research, 6(4), 495-508. doi:https://doi.org/10.12973/eu-jer.6.4.495
  • Haskel-Ittah, M., & Yarden, A. (2019). Students' conception of genetic phenomena and its effect on their ability to understand the underlying mechanism. CBE—Life Sciences Education, 17(3), ar36. https://doi.org/10.1187/cbe.18-01-0014
  • Jones, L., Jordan, K. D., & Stillings, N. (2005). Molecular visualization in chemistry education: the role of multidisciplinary collaboration. Chemistry Education Research and Practice, 3(6), 136-149. doi:https://doi.org/10.1039/b5rp90005k
  • Karagöz. M., & Çakır, M. (2011). Problem solving in genetics: conceptual and procedural difficulties. Educational Sciences: Theory & Practice, 11(3), 1668-1674.
  • Karasar, N. (2016). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler. (İkinci Yazım, 38.Basım). Nobel Akademik Yayıncılık.
  • Kılıç, D., Taber, K. S., & Winterbottom, M. (2016). A cross-national study of students’ understanding of genetics concepts: implications from similarities and differences in England and Turkey. Education Research International, Article ID 6539626. doi:https://doi.org/10.1155/2016/6539626
  • Knippels, M. C. P., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3). doi: 10.1080/00219266.2005.9655976
  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). Chromosomes: the missing link—young people's understanding of mitosis, meiosis, and fertilization. Journal of Biological Education, 34(4), 189-199. doi:https://doi.org/10.1080/00219266.2000.9655717
  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370-391. doi:https://doi.org/10.1002/tea.20007
  • Machová, M., & Ehler, E. (2021). Secondary school students’ misconceptions in genetics: origins and solutions. Journal of Biological Education, 1-14. doi:https://doi.org/10.1080/00219266.2021.1933136
  • Mamombe, A., Kazeni, M., & De Villiers, R. (2016). Context preferences of educators and learners for studying genetics: A case study in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 20(2), 165-174. doi:https://doi.org/10.1080/18117295.2016.1187509
  • Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205. doi:https://doi.org/10.1080/00219266.2000.9655718
  • MEB (2013). Lise Biyoloji (1-2-3-4) Dersi Öğretim Programı. Milli Eğitim Bakanlığı.
  • MEB. (2018a). Ortaöğretim Biyoloji Dersi Öğretim Programı (9., 10., 11. ve 12. Sınıflar). Milli Eğitim Bakanlığı.
  • MEB. (2018b). Ortaöğretim Fen Lisesi Biyoloji Dersi Öğretim Programı (9., 10., 11. ve 12. Sınıflar). Milli Eğitim Bakanlığı.
  • Öztekin, C., Çapa Aydın, Y., & Yılmaz Tüzün, Ö. (2000). Biyoloji öğretmen adaylarının genel biyoloji konularındaki kavram yanılgıları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 140–147.
  • Rodriguez-Becerra, J., Cáceres-Jensen, L., Díaz, T., Druker, S., Bahamonde Padilla, V., Pernaa, J. & Aksela, M. (2020). Developing technological pedagogical science knowledge through educational computational chemistry: a case study of pre-service chemistry teachers’ perceptions. Chemistry Education Research and Practice vol. 21(2), 638-654. doi:https://doi.org/10.1039/C9RP00273A
  • Roseman, J. E., Caldwell, A., Gogos, A. & Kurth, L. (2006). Mapping a coherent learning progression for the molecular basis of heredity. Presented at the National Association for Research in Science Teaching Annual Meeting.
  • Rusmana, A. N., Rachmatullah, A., Nuraeni, E., & Ha, M. (2021). The genetics conceptual understanding of Indonesian and United States undergraduate biology students. Asia-Pacific Science Education, 7(1), 197-225. doi:https://doi.org/10.1163/23641177-bja10024
  • Saka, A., Cerrah, L., Akdeniz, A. R., & Ayas, A. (2006). A cross-age study of the understanding of three genetic concepts: how do they image the gene, DNA and chromosome?. Journal of Science Education and Technology, 15, 192-202. doi:https://doi.org/10.1007/s10956-006-9006-6
  • Schneider, R. M., & Plasman, K. (2011). Science teacher learning progressions: A review of science teachers’ pedagogical content knowledge development. Review of Educational Research, 81(4), 530–565. doi:https://doi.org/10.3102/0034654311423382
  • Shi, J., Wood, W.B., Martin, J.M., Guild, N.A., Vicens, Q., & Knight, J.K. (2010). A diagnostic assessment for introductory molecular and cell biology. CBE Life Sciences Education, 9(4):453-61. doi:https://doi.org/10.1187/cbe.10-04-0055.
  • Smith, M.K & Knight, J.K. (2012). Using the genetics concept assessment to document persistent conceptual difficulties in undergraduate genetics courses. Genetics, 191(1),21-32. doi:https://doi.org/10.1534/genetics.111.137810
  • Stern, F. & Kampourakis, K. (2017). Teaching for genetics literacy in the post-genomic era. Studies in Science Education, 53(2), 193-225. doi:https://doi.org/10.1080/03057267.2017.1392731
  • Tatar, N., & Koray, C.Ö. (2005). İlköğretim sekizinci sınıf öğrencilerinin “genetik” ünitesi hakkındaki kavram yanılgılarının belirlenmesi. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(2), 415- 426.
  • Todd, A. & Romine, W. L. (2016). Validation of the learning progression-based assessment of modern genetics in a college context. International Journal of Science Education, 38(10),1673-1698. doi:https://doi.org/10.1002/sce.21252
  • Todd, A., Romine, W. L., & Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context. Research in Science Education, 49, 569-589. doi:https://doi.org/10.1007/s11165-017-9626-2
  • Todd, A., Romine, W., Sadeghi, R., Cook Whitt, K. & Banerjee, T. (2022). How do high school student’ progression networks change due to genetics instruction and how do they stabilize years after instruction? Journal of Research in Science Teaching, 59, 779-807. doi:https://doi.org/10.1002/tea.21744
  • Tornabene, R. (2018). Measuring Student Understanding of Genetics: Psychometric, Cognitive, and Demographic Considerations, Stony Brook University, ProQuest, LLC.
  • Tsui, C. Y., & Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in Science Education, 33, 111-135. doi:https://doi.org/10.1023/A:1023685706290
  • Uzun, N. & Sağlam, N. (2003). Orta öğretim biyoloji programında genetik konularının değerlendirilmesi ve öğrencilerin genetiğe karşı ilgisinin saptanması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 24, 29-136. van Mil, M. H., Postma, P. A., Boerwinkel, D. J., Klaassen, K., & Waarlo, A. J. (2016). Molecular mechanistic reasoning: Toward bridging the gap between the molecular and cellular levels in life science education. Science Education, 100(3), 517– 585. doi:https://doi.org/10.1002/sce.21215
  • Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 35(9), 1031-1055.
  • von Aufschnaiter, C., Alonzo, A., & Kost, D. (2015). Using Learning Progressions to Support Pre-Service Physics Teachers’ Noticing. In Annual International Conference of NARST, Chicago, April (pp. 11-14).
  • Vosniadou, S. (2019). The development of students’ understanding of science. Frontiers in Education, 4(32). doi:https://doi.org/10.3389/feduc.2019.00032
  • Wolyniak, M. J. (2013). Improved student linkage of Mendelian and molecular genetic concepts through a yeast‐based laboratory module. Biochemistry and Molecular Biology Education, 41(3), 163–172. doi:https://doi.org/10.1002/bmb20679
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Articles
Authors

Nazlı Ruya Taşkın Bedizel 0000-0001-6027-719X

Publication Date September 30, 2023
Published in Issue Year 2023 Issue: 57

Cite

APA Taşkın Bedizel, N. R. (2023). Birinci Sınıf Biyoloji ve Kimya Öğretmen Adaylarının Modern Genetiğe İlişkin Kavramsal Anlama Düzeylerinin Değerlendirilmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(57), 1842-1868. https://doi.org/10.53444/deubefd.1291712