General helices that lie on the sphere $S^{2 n}$ in Euclidean space $E^{2 n+1}$

Bülent Altunkaya ${ }^{\mathrm{a}^{*}}$ and Levent Kula ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Education, Kırşehir Ahi Evran University, Kırşehir, Turkey
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Science and Arts, Kırşehir Ahi Evran University, Kırşehir, Turkey
*Corresponding author E-mail: bulent.altunkaya@ahievran.edu.tr

Article Info

Keywords: General helix, Sphere, Spherical curve.
2010 AMS: 51L10, 53A05
Received: 18 June 2018
Accepted: 3 August 2018
Available online: 30 September 2018

Abstract

In this work, we give two methods to generate general helices that lie on the sphere $S^{2 n}$ in Euclidean ($2 \mathrm{n}+1$)-space $E^{2 n+1}$.

1. Introduction

In Euclidean 3-space E^{3}, the condition for a curve to lie on a sphere (spherical curve) is usually given in the form

$$
\frac{k_{2}}{k_{1}}+\left(\frac{1}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime}\right)^{\prime}=0
$$

where $k_{1}>0$ and $k_{2} \neq 0$ [8]. The integral form of the above equation was given in [2] as

$$
\frac{1}{k_{1}}=A \cos \int k_{2} d s+B \sin \int k_{2} d s
$$

Besides, researchers gave different characterizations about spherical curves by using the equations above [9, 10].
In E^{3}, general helices are defined by the property that their tangent makes a constant angle with a fixed direction in every point. In this paper we use this definition for higher dimensions too. But, the general helix notion in \mathbb{R}^{3} can be generalized to higher dimensions in many ways. In [7], the same definition is proposed but in \mathbb{R}^{n}. The definition of a general helix is more restrictive in [5]; the fixed direction makes a constant angle with all vectors of the Frenet frame. It is easy to check that this definition only works in odd dimensions [3]. Moreover, in the same paper, it is proven that this definition is equivalent to the fact that the ratios $\frac{k_{1}}{k_{2}}, \frac{k_{3}}{k_{4}}, \ldots, \frac{k_{n-4}}{k_{n-3}}, \frac{k_{n-2}}{k_{n-1}}$, where curvatures k_{i} are constants. This statement is related with the Lancret theorem for general helices in \mathbb{R}^{3}.
If a general helix lies on S^{n}, we call it spherical helix. This topic have become an active research area in recent years. In [6], Monterde studied constant curvature ratio curves (ccr-curves) for which all the ratios $\frac{k_{1}}{k_{2}}, \frac{k_{3}}{k_{4}}, \ldots$ are constant. He found explicit examples of spherical ccr-curves that lie on S^{2} with non-constant curvatures. He showed that a ccr-curve on S^{2} is a general helix. After that in [1], authors presented some necessary and sufficient conditions for a curve to be a slant helix in Euclidean n-space. They gave an example for a slant helix in E^{5} whose tangent indicatrix is a spherical helix that lie on S^{4}.
In literature, there are studies about spherical helices in E^{3} and there is only one example when $n \geq 4$ [1]. By means of the papers mentioned above, the goal of this paper is to find methods for generating spherical helices that lies on $S^{2 n}$ in $E^{2 n+1}$.

2. Basic concepts

The real vector space R^{n} with standard inner product and the standart orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is given by

$$
<X, Y>=\sum_{i=1}^{n} x_{i} y_{i}
$$

for each $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right), Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{n}$. In particular, the norm of a vector $X \in R^{n}$ is given by $\|X\|^{2}=<X, X>$.
Let $\alpha: I \subset R \rightarrow E^{n}$ be a regular curve in E^{n} and $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be the moving Frenet frame along the curve α, where $V_{i}(i=1,2, \ldots, n)$ denote i th Frenet vector field. Then, the Frenet formulas are given by

$$
\left\{\begin{array}{c}
V_{1}^{\prime}(t)=v(t) k_{1}(t) V_{2}(t) \tag{2.1}\\
V_{i}^{\prime}(t)=v(t)\left(-k_{i-1}(t) V_{i-1}(t)+k_{i}(t) V_{i+1}(t)\right), \quad i=2,3, \ldots, n-1 \\
V_{n}^{\prime}(t)=-v(t) k_{n-1}(t) V_{n-1}(t)
\end{array}\right.
$$

where $v(t)=\|d \alpha(t) / d t\|=\left\|\alpha^{\prime}(t)\right\|$ and $k_{i}(i=1,2, \ldots, n-1)$ denote the i th curvature function of the curve [4].
Definition 2.1. The curve $\alpha: I \subset R \rightarrow E^{n}$ is called general helix if its tangent vector V_{1} makes a constant angle with a fixed direction [7]. A sphere of center $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in E^{n}$ and radius $R>0$ is the surface

$$
S^{n}(P, R)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E^{n} \mid \quad\left(x_{1}-p_{1}\right)^{2}+\cdots+\left(x_{n}-p_{n}\right)^{2}=R^{2}\right\}
$$

When, P is the origin of E^{n} and $R=1$, we denote this with S^{n}, that is,

$$
S^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E^{n} \mid \quad x_{1}^{2}+\cdots+x_{n}^{2}=1\right\}
$$

3. Spherical helices in $E^{2 n+1}$

Now, we give two theorems to generate general helices that lie on $S^{2 n} \subset E^{2 n+1}$. To reach our goal; First, we use W-curves, i.e. a curve which has constant Frenet curvatures [3].

Theorem 3.1. Let,

$$
\gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s), \ldots, \gamma_{2 n}(s), \sqrt{1-R^{2}}\right) \subset S^{2 n-1}(P, R) \subset S^{2 n} \subset E^{2 n+1}
$$

be a unit speed W-curve with the Frenet vector fields $\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$ and the curvatures $\left\{k_{1}, k_{2}, \ldots, k_{2 n-1}\right\}$ where $P=\left(0,0, \ldots, 0, \sqrt{1-R^{2}}\right) \in$ $E^{2 n+1}, R=1 / a, a>1$. Then, $\alpha(s)=\sin (s) \gamma(s)+\cos (s) u_{1}(s)$ with the Frenet vector fields $\left\{V_{1}, V_{2}, \ldots, V_{2 n}\right\}$ is a general helix that lies on $S^{2 n}$.

Proof. With straightforward calculations, it is clear that

$$
\|\alpha\|=1
$$

then α is a spherical curve which lies on $S^{2 n}$.
We know $\left\langle\gamma, e_{2 n+1}\right\rangle=\sqrt{1-R^{2}}$. If we take derivatives of this equation with respect to s, we have

$$
\begin{equation*}
\left\langle u_{i}, e_{2 n+1}\right\rangle=0, \quad i=1,2, \ldots, 2 n \tag{3.1}
\end{equation*}
$$

Since $\langle\gamma-P, \gamma-P\rangle=R^{2}$, for $i=1,2, \ldots, n$ we also have

$$
\begin{gather*}
\left\langle u_{2 i-1}, \gamma\right\rangle=0 \\
\left\langle u_{2 i}, \gamma\right\rangle=\frac{-\prod_{j=0}^{i-1} k_{2 i}}{\prod_{j=1}^{i} k_{2 i-1}} \tag{3.2}
\end{gather*}
$$

where $k_{0}=1$. Then, by using Equations (3.1) and (3.2), we can write

$$
\gamma=P+\lambda_{1} u_{1}+\lambda_{2} u_{3}, \cdots+\lambda_{n} u_{2 n-1}
$$

So,

$$
\left\langle V_{1}, e_{2 n+1}\right\rangle=\sqrt{\frac{1-R^{2}}{k_{1}^{2}-1}}
$$

This completes the proof.

Corollary 3.2. If

$$
\begin{equation*}
\gamma(s)=\frac{R}{\sqrt{n}}\left(\sum_{j=1}^{n} \sin \left(c_{j} s\right) e_{2 j-1}+\sum_{j=1}^{n} \cos \left(c_{j} s\right) e_{2 j}\right)+\sqrt{1-R^{2}} e_{2 n+1} \tag{3.3}
\end{equation*}
$$

where $R=\left(\frac{n}{\sum_{j=1}^{n} c_{j}^{2}}\right)^{1 / 2}, a=\left(\frac{\sum_{j=1}^{n} c_{j}^{2}}{n}\right)^{1 / 2}>1$ and $c_{i} \neq c_{j}, 1 \leq i<j \leq n$.
Then, $\alpha(s)=\sin (s) \gamma(s)+\cos (s) u_{1}(s)$ is a general helix that lies on $S^{2 n}$ in $E^{2 n+1}$.
Example 3.3. If we take $c_{1}=2, c_{2}=4$, and $n=2$ in Corollary 3.2 we have

$$
\begin{aligned}
& P=\left(0,0,0,0, \frac{1}{\sqrt{10}}\right), \\
& R=\frac{3}{\sqrt{10}}, \\
& \gamma(s)=\left(\frac{\sin (2 s)}{2 \sqrt{5}}, \frac{\cos (2 s)}{2 \sqrt{5}}, \frac{\sin (4 s)}{2 \sqrt{5}}, \frac{\cos (4 s)}{2 \sqrt{5}}, \frac{3}{\sqrt{10}}\right) \subset S^{3}(P, R) \subset S^{4}, \\
& v_{1}(s)=\left(\frac{\cos (2 s)}{\sqrt{5}},-\frac{\sin (2 s)}{\sqrt{5}}, \frac{2 \cos (4 s)}{\sqrt{5}},-\frac{2 \sin (4 s)}{\sqrt{5}}, 0\right) .
\end{aligned}
$$

Then, γ is a unit speed spherical W-curve with the curvatures

$$
\begin{aligned}
& k_{1}=2 \sqrt{\frac{17}{5}} \\
& k_{2}=\frac{12}{\sqrt{85}} \\
& k_{3}=4 \sqrt{\frac{5}{17}}, \\
& k_{4}=0
\end{aligned}
$$

Therefore, we get

$$
\alpha(s)=\left(\frac{\cos ^{3}(s)}{\sqrt{5}},-\frac{3 \sin (s)+\sin (3 s)}{4 \sqrt{5}}, \frac{2 \cos ^{3}(s)(3 \cos (2 s)-2)}{\sqrt{5}},-\frac{5 \sin (3 s)+3 \sin (5 s)}{4 \sqrt{5}}, \frac{3 \sin (s)}{\sqrt{10}}\right)
$$

with the tangent vector field

$$
V_{1}(s)=\left(-\frac{\sin (s) \cos (s)}{\sqrt{7}},-\frac{(\cos (s)+\cos (3 s)) \sec (s)}{4 \sqrt{7}}, \frac{5(\sin (s)-\sin (3 s)) \cos (s)}{\sqrt{7}},-\frac{5(\cos (3 s)+\cos (5 s)) \sec (s)}{4 \sqrt{7}}, \frac{1}{\sqrt{14}}\right)
$$

where $\|\alpha\|=1$.
By means of Theorem 3.1 and Corollary 3.2 we can give a new theorem.
Theorem 3.4. Let $\alpha: I \subset R \rightarrow E^{2 n+1}$

$$
\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{2 n+1}(t)\right)
$$

be a regular curve given by

$$
\begin{aligned}
& \alpha_{2 i-1}(t)=\frac{1}{\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}}\left(c_{i} \cos (t) \cos \left(c_{i} t\right)+\sin (t) \sin \left(c_{i} t\right)\right), \\
& \alpha_{2 i}(t)=\frac{1}{\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}}\left(\cos \left(c_{i} t\right) \sin (t)-c_{i} \cos (t) \sin \left(c_{i} t\right)\right),
\end{aligned}
$$

for $i=1,2, \ldots n$ and

$$
\alpha_{2 n+1}(t)=\left(1-\frac{n}{\sum_{j=1}^{n} c_{j}^{2}}\right)^{1 / 2} \sin (t)
$$

where $c_{1}, c_{2}, \ldots, c_{n}>1$ with $c_{i} \neq c_{j}, 1 \leq i<j \leq n$. Then, α is a general helix which lies on $S^{2 n}$.

Proof. With straightforward calculations, we easily have

$$
\begin{aligned}
& \|\alpha(t)\|=1 \\
& \left\|\alpha^{\prime}(t)\right\|=\left(\frac{\left(\sum_{i=1}^{n} c_{i}^{2}\right)\left(1-\frac{n}{\sum_{i=1}^{n} c_{i}^{2}}\right)}{\sum_{i=1}^{n}\left(c_{i}^{4}-c_{i}^{2}\right)}\right)^{1 / 2} \cos (t)
\end{aligned}
$$

and

$$
V_{1}(t)=\left(\sum_{i=1}^{n}\left(c_{i}^{4}-c_{i}^{2}\right)\right)^{-1 / 2}\left(\sum_{i=1}^{n}\left(1-c_{i}^{2}\right)\left(\sin \left(c_{i} t\right) e_{2 i-1}-\cos \left(c_{i} t\right) e_{2 i}\right)+\left(\sum_{i=1}^{n} c_{i}^{2}\left(1-\frac{n}{\sum_{i=1}^{n} c_{i}^{2}}\right)\right)^{1 / 2} e_{2 n+1}\right)
$$

Therefore, we have

$$
\left\langle V_{1}(t), e_{2 n+1}\right\rangle=\left(\sum_{i=1}^{n}\left(c_{i}^{4}-c_{i}^{2}\right)\right)^{-1 / 2}\left(\sum_{i=1}^{n} c_{i}^{2}\left(1-\frac{n}{\sum_{i=1}^{n} c_{i}^{2}}\right)\right)^{1 / 2}
$$

This completes the proof.
Example 3.5. If we take $n=4$ and $c_{1}=\sqrt{2}, c_{2}=\sqrt{3}, c_{3}=2$ in Theorem 3.4 we have,

$$
\begin{aligned}
& \alpha(t)=(\frac{\sqrt{2}}{3} \cos (t) \cos (\sqrt{2} t)+\frac{1}{3} \sin (t) \sin (\sqrt{2} t), \\
& \frac{1}{3} \cos (\sqrt{2} t) \sin (t)-\frac{\sqrt{2}}{3} \cos (t) \sin (\sqrt{2} t), \\
& \frac{1}{\sqrt{3}} \cos (t) \cos (\sqrt{3} t)+\frac{1}{3} \sin (t) \sin (\sqrt{3} t), \\
& \frac{1}{3} \cos (\sqrt{3} t) \sin (t)-\frac{1}{\sqrt{3}} \cos (t) \sin (\sqrt{3} t), \\
& \frac{2}{3} \cos (t) \cos (2 t)+\frac{1}{3} \sin (t) \sin (2 t), \\
& \frac{1}{3} \cos (2 t) \sin (t)-\frac{2}{3} \cos (t) \sin (2 t), \\
&\left.\sqrt{\frac{2}{3}} \sin (t)\right), \\
&\|\alpha(t)\|= 1, \\
&\left\|\alpha^{\prime}(t)\right\|= \frac{2 \sqrt{5} \cos (t)}{3}, \\
& V_{1}(t)=\left(-\frac{\sin (\sqrt{2} t)}{2 \sqrt{5}},-\frac{\cos (\sqrt{2} t)}{2 \sqrt{5}},-\frac{\sin (\sqrt{3} t)}{\sqrt{5}},-\frac{\cos (\sqrt{3} t)}{\sqrt{5}},-\frac{3 \sin (2 t)}{2 \sqrt{5}},-\frac{3 \cos (2 t)}{2 \sqrt{5}}, \sqrt{\frac{3}{10}}\right)
\end{aligned}
$$

and

$$
\left\langle V_{1}(t), e_{7}\right\rangle=\sqrt{\frac{3}{10}}
$$

Therefore, from Definition 2.1, α is a spherical helix.

Acknowledgement

We wish to thank the referees for the careful reading of the manuscript and constructive comments that have substantially improved the presentation of the paper.

References

[1] Ali, Ahmad T., Turgut, M.: Some characterizations of slant helices in the Euclidean space E^{n}, Hacettepe Journal of Mathematics and Statistics, 39, 327-336, (2010).
[2] Breuer, S. and Gottlieb, D.: Explicit characterization of spherical curves, Proc. Am. Math. Soc., 274, 126-127, (1972).
[3] Camci, C. Ilarslan, K. Kula, L. and Hacisalihoglu, H.H.: Harmonic cuvature and general helices, Chaos Solitons \& Fractals, 40, 2590-2596, (2009).
[4] Gluck, H.: Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73, 699-704, (1966).
[5] Hayden, H. A.: On a general helix in a Riemannian n-space, Proc. London Math. Soc. 2, 37-45, (1931).
[6] Monterde, J.,: Curves with constant curvature ratios, Bol. Soc. Mat. Mexicana 3a, 13/1, 177-186, (2007).
[7] Romero-Fuster, M.C., Sanabria-Codesal, E.: Generalized helices, twistings and flattenings of curves in n-space. Mat. Cont., 17, 267-280, (1999).
[8] Struik, D.J.: Lectures on Classical Differential Geometry, Dover, New-York, (1988).
[9] Wong Y.C.,: A global formulation of the condition for a curve to lie in a sphere, Monatsch Math, 67, 363-365, (1963).
[10] Wong Y.C.,: On a explicit characterization of spherical curves, Proc. Am. Math. Soc., 34, 239-242, (1972).

