UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: http://dx.doi.org/10.32323/ujma.434361

General helices that lie on the sphere S^{2n} in Euclidean space E^{2n+1}

Bülent Altunkaya^{a*} and Levent Kula^b

^aDepartment of Mathematics, Faculty of Education, Kırşehir Ahi Evran University, Kırşehir, Turkey ^bDepartment of Mathematics, Faculty of Science and Arts, Kırşehir Ahi Evran University, Kırşehir, Turkey ^{*}Corresponding author E-mail: bulent.altunkaya@ahievran.edu.tr

Article Info	Abstract
Keywords: General helix, Sphere, Spherical curve. 2010 AMS: 51L10, 53A05 Received: 18 June 2018 Accepted: 3 August 2018 Available online: 30 September 2018	In this work, we give two methods to generate general helices that lie on the sphere S^{2n} in Euclidean (2n+1)-space E^{2n+1} .

1. Introduction

In Euclidean 3-space E^3 , the condition for a curve to lie on a sphere (spherical curve) is usually given in the form

$$\frac{k_2}{k_1} + \left(\frac{1}{k_2}\left(\frac{1}{k_1}\right)'\right)' = 0$$

where $k_1 > 0$ and $k_2 \neq 0$ [8]. The integral form of the above equation was given in [2] as

$$\frac{1}{k_1} = A\cos\int k_2\,ds + B\sin\int k_2\,ds.$$

Besides, researchers gave different characterizations about spherical curves by using the equations above [9, 10].

In E^3 , general helices are defined by the property that their tangent makes a constant angle with a fixed direction in every point. In this paper we use this definition for higher dimensions too. But, the general helix notion in \mathbb{R}^3 can be generalized to higher dimensions in many ways. In [7], the same definition is proposed but in \mathbb{R}^n . The definition of a general helix is more restrictive in [5]; the fixed direction makes a constant angle with all vectors of the Frenet frame. It is easy to check that this definition only works in odd dimensions [3]. Moreover, in the same paper, it is proven that this definition is equivalent to the fact that the ratios $\frac{k_1}{k_2}, \frac{k_3}{k_4}, \dots, \frac{k_{n-4}}{k_{n-3}}, \frac{k_{n-2}}{k_{n-1}}$, where curvatures k_i are constants. This statement is related with the Lancret theorem for general helices in \mathbb{R}^3 .

If a general helix lies on S^n , we call it spherical helix. This topic have become an active research area in recent years. In [6], Monterde studied constant curvature ratio curves (ccr-curves) for which all the ratios $\frac{k_1}{k_2}$, $\frac{k_3}{k_4}$,... are constant. He found explicit examples of spherical ccr-curves that lie on S^2 with non-constant curvatures. He showed that a ccr-curve on S^2 is a general helix. After that in [1], authors presented some necessary and sufficient conditions for a curve to be a slant helix in Euclidean n-space. They gave an example for a slant helix in E^5 whose tangent indicatrix is a spherical helix that lie on S^4 .

In literature, there are studies about spherical helices in E^3 and there is only one example when $n \ge 4$ [1]. By means of the papers mentioned above, the goal of this paper is to find methods for generating spherical helices that lies on S^{2n} in E^{2n+1} .

Email addresses: bulent.altunkaya@ahievran.edu.tr (B. Altunkaya), lkula@ahievran.edu.tr (L. Kula)

2. Basic concepts

The real vector space \mathbb{R}^n with standard inner product and the standard orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ is given by

$$\langle X, Y \rangle = \sum_{i=1}^{n} x_i y_i$$

for each $X = (x_1, x_2, ..., x_n)$, $Y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. In particular, the norm of a vector $X \in \mathbb{R}^n$ is given by $||X||^2 = \langle X, X \rangle$. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}^n$ be a regular curve in \mathbb{E}^n and $\{V_1, V_2, ..., V_n\}$ be the moving Frenet frame along the curve α , where V_i (i = 1, 2, ..., n) denote *i*th Frenet vector field. Then, the Frenet formulas are given by

$$\begin{cases} V_{1}'(t) = v(t)k_{1}(t) V_{2}(t) \\ V_{i}'(t) = v(t)(-k_{i-1}(t) V_{i-1}(t) + k_{i}(t) V_{i+1}(t)), & i = 2, 3, ..., n-1 \\ V_{n}'(t) = -v(t)k_{n-1}(t) V_{n-1}(t) \end{cases}$$
(2.1)

where $v(t) = ||d\alpha(t)/dt|| = ||\alpha'(t)||$ and k_i (i = 1, 2, ..., n-1) denote the *i*th curvature function of the curve [4].

Definition 2.1. The curve α : $I \subset R \to E^n$ is called general helix if its tangent vector V_1 makes a constant angle with a fixed direction [7]. A sphere of center $P = (p_1, p_2, ..., p_n) \in E^n$ and radius R > 0 is the surface

$$S^{n}(P,R) = \left\{ (x_{1}, x_{2}, ..., x_{n}) \in E^{n} | \quad (x_{1} - p_{1})^{2} + \dots + (x_{n} - p_{n})^{2} = R^{2} \right\}.$$

When, *P* is the origin of E^n and R = 1, we denote this with S^n , that is,

$$S^{n} = \left\{ (x_{1}, x_{2}, ..., x_{n}) \in E^{n} | \quad x_{1}^{2} + \dots + x_{n}^{2} = 1 \right\}.$$

3. Spherical helices in E^{2n+1}

Now, we give two theorems to generate general helices that lie on $S^{2n} \subset E^{2n+1}$. To reach our goal; First, we use W-curves, i.e. a curve which has constant Frenet curvatures [3].

Theorem 3.1. Let,

$$\gamma(s) = \left(\gamma_1(s), \gamma_2(s), \dots, \gamma_{2n}(s), \sqrt{1-R^2}\right) \subset S^{2n-1}(P, R) \subset S^{2n} \subset E^{2n+1}(P, R)$$

be a unit speed W-curve with the Frenet vector fields $\{u_1, u_2, \dots, u_{2n}\}$ and the curvatures $\{k_1, k_2, \dots, k_{2n-1}\}$ where $P = (0, 0, \dots, 0, \sqrt{1-R^2}) \in E^{2n+1}$, R = 1/a, a > 1. Then, $\alpha(s) = \sin(s)\gamma(s) + \cos(s)u_1(s)$ with the Frenet vector fields $\{V_1, V_2, \dots, V_{2n}\}$ is a general helix that lies on S^{2n} .

Proof. With straightforward calculations, it is clear that

$$\|\boldsymbol{\alpha}\|=1,$$

then α is a spherical curve which lies on S^{2n} . We know $\langle \gamma, e_{2n+1} \rangle = \sqrt{1-R^2}$. If we take derivatives of this equation with respect to *s*, we have

$$\langle u_i, e_{2n+1} \rangle = 0, \quad i = 1, 2, ..., 2n.$$
 (3.1)

Since $\langle \gamma - P, \gamma - P \rangle = R^2$, for i = 1, 2, ..., n we also have

$$\langle u_{2i}, \gamma \rangle = \frac{-\prod_{j=0}^{i-1} k_{2i}}{\prod_{j=1}^{i} k_{2i-1}}$$
(3.2)

where $k_0 = 1$. Then, by using Equations (3.1) and (3.2), we can write

 $\gamma = P + \lambda_1 u_1 + \lambda_2 u_3, \dots + \lambda_n u_{2n-1}$

So,

$$\langle V_1, e_{2n+1} \rangle = \sqrt{\frac{1-R^2}{k_1^2 - 1}}$$

 $\langle u_{2i-1}, \gamma \rangle = 0,$

This completes the proof.

Corollary 3.2. If

$$\gamma(s) = \frac{R}{\sqrt{n}} \left(\sum_{j=1}^{n} \sin(c_j s) e_{2j-1} + \sum_{j=1}^{n} \cos(c_j s) e_{2j} \right) + \sqrt{1 - R^2} e_{2n+1}$$

$$R = \left(-\frac{n}{2} \right)^{1/2} e_{2n+1} \left(\sum_{j=1}^{n} c_j^2 \right)^{1/2} \ge 1 \text{ and } c_j = 1 \text{ or } i \in i \in i \in i$$

where $R = \left(\frac{n}{\sum_{j=1}^{n} c_j^2}\right)$, $a = \left(\frac{\sum_{j=1}^{n} c_j}{n}\right) > 1$ and $c_i \neq c_j$, $1 \le i < j \le n$. Then, $\alpha(s) = \sin(s)\gamma(s) + \cos(s)u_1(s)$ is a general helix that lies on S^{2n} in E^{2n+1} .

Example 3.3. If we take $c_1 = 2$, $c_2 = 4$, and n = 2 in Corollary 3.2 we have

$$\begin{split} P &= \left(0, 0, 0, 0, \frac{1}{\sqrt{10}}\right), \\ R &= \frac{3}{\sqrt{10}}, \\ \gamma(s) &= \left(\frac{\sin(2s)}{2\sqrt{5}}, \frac{\cos(2s)}{2\sqrt{5}}, \frac{\sin(4s)}{2\sqrt{5}}, \frac{\cos(4s)}{2\sqrt{5}}, \frac{3}{\sqrt{10}}\right) \subset S^3(P, R) \subset S^4, \\ v_1(s) &= \left(\frac{\cos(2s)}{\sqrt{5}}, -\frac{\sin(2s)}{\sqrt{5}}, \frac{2\cos(4s)}{\sqrt{5}}, -\frac{2\sin(4s)}{\sqrt{5}}, 0\right). \end{split}$$

Then, γ is a unit speed spherical W-curve with the curvatures

$$k_1 = 2\sqrt{\frac{17}{5}},$$

$$k_2 = \frac{12}{\sqrt{85}},$$

$$k_3 = 4\sqrt{\frac{5}{17}},$$

$$k_4 = 0.$$

Therefore, we get

$$\alpha(s) = \left(\frac{\cos^3(s)}{\sqrt{5}}, -\frac{3\sin(s) + \sin(3s)}{4\sqrt{5}}, \frac{2\cos^3(s)(3\cos(2s) - 2)}{\sqrt{5}}, -\frac{5\sin(3s) + 3\sin(5s)}{4\sqrt{5}}, \frac{3\sin(s)}{\sqrt{10}}\right)$$

with the tangent vector field

$$V_1(s) = \left(-\frac{\sin(s)\cos(s)}{\sqrt{7}}, -\frac{(\cos(s) + \cos(3s))\sec(s)}{4\sqrt{7}}, \frac{5(\sin(s) - \sin(3s))\cos(s)}{\sqrt{7}}, -\frac{5(\cos(3s) + \cos(5s))\sec(s)}{4\sqrt{7}}, \frac{1}{\sqrt{14}}\right)$$

where $\|\alpha\| = 1$.

By means of Theorem 3.1 and Corollary 3.2 we can give a new theorem.

Theorem 3.4. Let $\alpha : I \subset R \to E^{2n+1}$

 $\boldsymbol{\alpha}(t) = (\boldsymbol{\alpha}_1(t), \boldsymbol{\alpha}_2(t), \dots, \boldsymbol{\alpha}_{2n+1}(t))$

be a regular curve given by

$$\begin{split} \alpha_{2i-1}(t) &= \frac{1}{\left(\sum_{j=1}^{n} c_j^2\right)^{1/2}} \left(c_i \cos\left(t\right) \cos\left(c_i t\right) + \sin\left(t\right) \sin\left(c_i t\right)\right) \\ \alpha_{2i}(t) &= \frac{1}{\left(\sum_{j=1}^{n} c_j^2\right)^{1/2}} \left(\cos\left(c_i t\right) \sin\left(t\right) - c_i \cos\left(t\right) \sin\left(c_i t\right)\right), \end{split}$$

for i = 1, 2, ... n and

$$\alpha_{2n+1}(t) = \left(1 - \frac{n}{\sum_{j=1}^{n} c_j^2}\right)^{1/2} \sin(t)$$

where $c_1, c_2, \ldots, c_n > 1$ with $c_i \neq c_j, 1 \leq i < j \leq n$. Then, α is a general helix which lies on S^{2n} .

(3.3)

Proof. With straightforward calculations, we easily have

$$||\alpha(t)|| = 1,$$

$$||\alpha'(t)|| = \left(\frac{\left(\sum_{i=1}^{n} c_i^2\right) \left(1 - \frac{n}{\sum_{i=1}^{n} c_i^2}\right)}{\sum_{i=1}^{n} \left(c_i^4 - c_i^2\right)}\right)^{1/2} \cos(t),$$

and

$$V_{1}(t) = \left(\sum_{i=1}^{n} \left(c_{i}^{4} - c_{i}^{2}\right)\right)^{-1/2} \left(\sum_{i=1}^{n} \left(1 - c_{i}^{2}\right) \left(\sin(c_{i}t)e_{2i-1} - \cos(c_{i}t)e_{2i}\right) + \left(\sum_{i=1}^{n} c_{i}^{2} \left(1 - \frac{n}{\sum_{i=1}^{n} c_{i}^{2}}\right)\right)^{1/2} e_{2n+1}\right)$$

Therefore, we have

$$\langle V_1(t), e_{2n+1} \rangle = \left(\sum_{i=1}^n \left(c_i^4 - c_i^2 \right) \right)^{-1/2} \left(\sum_{i=1}^n c_i^2 \left(1 - \frac{n}{\sum_{i=1}^n c_i^2} \right) \right)^{1/2}.$$

This completes the proof.

Example 3.5. If we take n = 4 and $c_1 = \sqrt{2}$, $c_2 = \sqrt{3}$, $c_3 = 2$ in Theorem 3.4 we have,

$$\begin{aligned} \alpha(t) &= \left(\frac{\sqrt{2}}{3}\cos(t)\cos\left(\sqrt{2}t\right) + \frac{1}{3}\sin(t)\sin\left(\sqrt{2}t\right), \\ &\qquad \frac{1}{3}\cos\left(\sqrt{2}t\right)\sin(t) - \frac{\sqrt{2}}{3}\cos(t)\sin\left(\sqrt{2}t\right), \\ &\qquad \frac{1}{\sqrt{3}}\cos(t)\cos\left(\sqrt{3}t\right) + \frac{1}{3}\sin(t)\sin\left(\sqrt{3}t\right), \\ &\qquad \frac{1}{3}\cos\left(\sqrt{3}t\right)\sin(t) - \frac{1}{\sqrt{3}}\cos(t)\sin\left(\sqrt{3}t\right), \\ &\qquad \frac{2}{3}\cos(t)\cos(2t) + \frac{1}{3}\sin(t)\sin(2t), \\ &\qquad \frac{1}{3}\cos(2t)\sin(t) - \frac{2}{3}\cos(t)\sin(2t), \\ &\qquad \sqrt{\frac{2}{3}}\sin(t)\right), \end{aligned}$$

 $||\boldsymbol{\alpha}(t)|| = 1,$

$$\begin{aligned} ||\alpha'(t)|| &= \frac{2\sqrt{5}\cos(t)}{3}, \\ V_1(t) &= \left(-\frac{\sin\left(\sqrt{2}t\right)}{2\sqrt{5}}, -\frac{\cos\left(\sqrt{2}t\right)}{2\sqrt{5}}, -\frac{\sin\left(\sqrt{3}t\right)}{\sqrt{5}}, -\frac{\cos\left(\sqrt{3}t\right)}{\sqrt{5}}, -\frac{3\sin(2t)}{2\sqrt{5}}, -\frac{3\cos(2t)}{2\sqrt{5}}, \sqrt{\frac{3}{10}}\right) \end{aligned}$$

and

$$\langle V_1(t), e_7 \rangle = \sqrt{\frac{3}{10}}.$$

Therefore, from Definition 2.1, α is a spherical helix.

Acknowledgement

We wish to thank the referees for the careful reading of the manuscript and constructive comments that have substantially improved the presentation of the paper.

References

- [1] Ali, Ahmad T., Turgut, M.: Some characterizations of slant helices in the Euclidean space E^n , Hacettepe Journal of Mathematics and Statistics, 39, [1] July Alli, July All, Solid Characterizations of shart hences in the Euclidean space D ', Facture to Solid Provide Statistics, 57 (2010).
 [2] Breuer, S. and Gottlieb, D.: Explicit characterization of spherical curves, *Proc. Am. Math. Soc.*, 274, 126–127, (1972).
 [3] Camci, C. Ilarslan, K. Kula, L. and Hacisalihoglu, H.H.: Harmonic cuvature and general helices, *Chaos Solitons & Fractals*, 40, 2590-2596, (2009).
 [4] Gluck, H.: Higher curvatures of curves in Euclidean space, *Amer. Math. Monthly* 73, 699-704, (1966).

- [4] Gluck, H.: Higher curvatures of curves in Euclidean space, *Amer. Math. Monthly 73*, 699-704, (1966).
 [5] Hayden, H. A.: On a general helix in a Riemannian n-space, *Proc. London Math. Soc.* 2, 37-45, (1931).
 [6] Monterde, J.,: Curves with constant curvature ratios, *Bol. Soc. Mat. Mexicana 3a*, 13/1, 177–186, (2007).
 [7] Romero-Fuster, M.C., Sanabria-Codesal, E.: Generalized helices, twistings and flattenings of curves in n-space. *Mat. Cont.*, 17, 267-280, (1999).
 [8] Struik, D.J.: Lectures on Classical Differential Geometry, Dover, New-York, (1988).
 [9] Wong Y.C.,: A global formulation of the condition for a curve to lie in a sphere, *Monatsch Math*, 67, 363–365, (1963).
 [10] Wong Y.C.,: On a explicit characterization of spherical curves, *Proc. Am. Math. Soc.*, 34, 239–242, (1972).