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Abstract

In this paper, firstly we introduced the concepts of rough I -convergence, rough I ∗-
convergence, rough I -Cauchy sequence, and rough I ∗-Cauchy sequence of a function
defined on discrete countable amenable semigroups. Then, we investigated the relations
between them.

1. Introduction

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers. The idea of I -convergence was introduced
by Kostyrko et al. [1] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of N.
Phu [2] introduced, firstly, the notion of rough convergence in finite-dimensional normed spaces. In [2], he investigated some properties of
LIMrx such as boundedness, closedness and convexity, and also he defined the notion of rough Cauchy sequence. Then, Phu [3] studied
on rough convergence and some important properties of this concept. Furthermore, recently some authors [4–8] investigated the rough
convergence types in some normed spaces.
In [9], Day studied on the concept of amenable semigroups (or briefly ASG). Then, some authors [10–12] studied the notions of summability
in ASG. Douglas [13] extended the notion of arithmetic mean to ASG and obtained a characterization for almost convergence in ASG.
In [14], Nuray and Rhoades presented the concepts of convergence and statistical convergence in ASG. Dündar et al. [15] and Dündar,
Ulusu [16] introduced rough convergence and investigated some properties of rough convergence in ASG. Dündar, Ulusu [17] studied rough
statistical convergence in ASG. Also, Dündar et al. [18] defined rough ideal convergence and some properties in ASG. Recently, some
authors studied on the new concepts in ASG (see [19–22]).
First of all, we remember the basic definitions and concepts that we will use in our study such as amenable semigroups, rough convergence,
rough ideal convergence, etc. (see [2, 3, 8–16, 18–24, 26, 27]).
Let a real number r ≥ 0 and Rn (the real n-dimensional space) with the norm ∥.∥, and a sequence x = (xk)

n
k=0 ⊂ Rn.

A sequence (xk) is said to be r-convergent to L, denoted by xk
r−→ L, provided that

∀ε > 0 ∃kε ∈ N : k ≥ kε ⇒∥xk −L∥< r+ ε.

The rough limit set of the sequence x = (xk) is showed by LIMrx = {L ∈ Rn : xk
r−→ L}.

A sequence x = (xk) is said to be r-convergent if LIMrx ̸= /0 and r is called the convergence degree of the sequence (xk). For r = 0, we get
the ordinary convergence.
Let G be a discrete countable amenable semigroups (or briefly DCASG) with identity in which both left and right cancelation laws hold, and
w(G) denotes the space of all real valued functions on G.
If G is a countable amenable group, there exists a sequence {Sn} of finite subsets of G such that
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(i) G =
⋃

∞
n=1 Sn,

(ii) Sn ⊂ Sn+1 (n = 1,2, ...),
(iii) lim

n→∞

|Sng∩Sn|
|Sn| = 1, lim

n→∞

|gSn∩Sn|
|Sn| = 1, for all g ∈ G.

If a sequence of finite subsets of G satisfy (i)-(iii), then it is called a Folner sequence (or briefly FS) of G.
Throughout the paper, we take G be a DCASG with identity in which both left and right cancelation laws hold.
For any FS {Sn} of G, a function f ∈w(G) is said to be convergent to t if for every ε > 0 there exists a k0 = k0(ε)∈N such that | f (g)−t|< ε,
for all m > k0 and g ∈ G\Sm.
Let X ̸= /0. A class I of subsets of X is said to be an ideal in X provided:

i) /0 ∈ I ,
ii) A,B ∈ I implies A∪B ∈ I ,

iii) A ∈ I , B ⊂ A implies B ∈ I .

I is called a nontrivial ideal if X ̸∈ I . A nontrivial ideal I in X is called admissible if {x} ∈ I , for each x ∈ X .
Throughout the paper, we take I as an admissible ideal in N.
Let X ̸= /0. A class /0 ̸= F of subsets of X is said to be a filter in X provided:

i) /0 ̸∈ F ,
ii) A,B ∈ F implies A∩B ∈ F ,

iii) A ∈ F , A ⊂ B implies B ∈ F .

If I is a nontrivial ideal in X , X ̸= /0, then the class

F (I ) = {M ⊂ X : (∃A ∈ I )(M = X\A)}

is a filter on X , called the filter associated with I .
An admissible ideal I ⊂ 2N satisfies the property (AP), if for every countable family of mutually disjoint sets {A1,A2, . . .} belonging to I ,
there exists a countable family of sets {B1,B2, . . .} such that A j∆B j is a finite set for j ∈ N and B =

⋃
∞
j=1 B j ∈ I (hence B j ∈ I for each

j ∈ N).
After then, we let I ⊆ 2G be an admissible ideal for amenable semigroup G.
A function f ∈ w(G) is said to be I -convergent to s for any FS {Sn} for G, if for every ε > 0{

g ∈ G : | f (g)− s| ≥ ε
}
∈ I .

In this case, we write I − lim f (g) = s.
A function f ∈ w(G) is said to be I ∗-convergent to s, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I ) (i.e., G\M ∈ I ) and a
k0 = k0(ε) ∈ N such that for every ε > 0 | f (g)− s|< ε, for all n > k0 and all g ∈ M \Sn. In this case, we write I ∗− lim f (g) = s.
A function f ∈ w(G) is said to be I -Cauchy sequence, for any FS {Sn} for G if for every ε > 0, there exists an h = h(ε) ∈ G such that{

g ∈ G : | f (g)− f (h)| ≥ ε
}
∈ I .

A function f ∈ w(G) is said to be I ∗-Cauchy sequence, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I ) (i.e., G\M ∈ I ) and a
k0 = k0(ε) ∈ N such that for every ε > 0 | f (g)− f (h)|< ε, for all n > k0 and g,h ∈ M \Sn.
For any FS {Sn} of G, a function f ∈ w(G) is said to be rough convergent (r-convergent) to t if

∀ε > 0 ∃kε ∈ N : m ≥ kε ⇒ | f (g)− t|< r+ ε, (1.1)

for all g ∈ G\Sm or equivalently if limsup | f (g)− t| ≤ r, for all g ∈ G\Sm. In this instance, we write r− lim f (g) = t or f (g) r→ t.
If (1.1) holds, then t is an r-limit point of the function f ∈ w(G), which is usually no longer unique (for r > 0). Hence, we have to think the
so-called rough limit set (r-limit set) of the function f ∈ w(G) defined by LIMr f := {t : f (g) r→ t}.
For any FS {Sn} for G, the function f ∈ w(G) is said to be r-convergent if LIMr f ̸= /0. In this instance, r is called the convergence degree of
the f ∈ w(G).
For any FS {Sn} of G, a function f ∈ w(G) is said to be a rough Cauchy sequence with roughness degree ℘, if ∀ε > 0 ∃kε : m ≥ kε ⇒
| f (g)− f (h)| ≤℘+ ε is hold for ℘> 0 and all g,h ∈ G\Sm. ℘ is also said to be Cauchy degree of f ∈ w(G).

2. Main Results

In this section, we introduced the concepts of rough I -convergence, rough I ∗-convergence, rough I -Cauchy sequence and rough
I ∗-Cauchy sequence of a function defined on discrete countable amenable semigroups. Then, we investigated relations between them.

Definition 2.1. For any FS {Sn} of G, a function f ∈ w(G) is said to be rough I -convergent (r-I -convergent) to s if for every ε > 0

{g ∈ G : | f (g)− s| ≥ r+ ε} ∈ I (2.1)

or equivalently if

I − limsup | f (g)− s| ≤ r

is satisfied. In this instance, we write

r−I − lim f (g) = s or f (g) r−I−→ s.

On the other hand, we say that f (g) r−I−→ s if and only if the condition

| f (g)− s| ≤ r+ ε

holds for every ε > 0 and almost g ∈ G.
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In this convergence r is named the roughness degree. For r = 0, we get the I -convergence.
If (2.1) holds, then s is an r-I -limit point of the function f ∈ w(G), which is usually no longer unique (for r > 0). Hence, we have to think
the so-called rough I -limit set of the function f ∈ w(G) defined by

I −LIMr f := {s : f (g) r−I−→ s}.

For any FS {Sn} for G, the function f ∈ w(G) is said to be r-I -convergent if

I −LIMr f ̸= /0.

If I −LIMr f ̸= /0 for a function f ∈ w(G), then we have

I −LIMr f = [I − limsup f − r, I − liminf f + r].

Remark 2.2. If I is an admissible ideal, then for a function f ∈ w(G), usual rough convergence implies rough I -convergence for any FS
{Sn} of G.

Definition 2.3. A function f ∈ w(G) is said to be rough I -Cauchy sequence, for any FS {Sn} for G if for every ε > 0, there exists an
h = h(ε) ∈ G such that{

g ∈ G : | f (g)− f (h)| ≥ r+ ε
}
∈ I .

Theorem 2.4. If f ∈ w(G) is rough I -convergent for any FS {Sn} for G, then it is rough I -Cauchy for same sequence.

Proof. For any Folner sequence {Sn} for G, let

r−I − lim f (g) = s.

Then, for every ε > 0, we have

Aε =
{

g ∈ G : | f (g)− s| ≥ r+ ε
}
∈ I .

Since I is an admissible ideal there exists an h ∈ G such that h /∈ Aε . Now, let

Bε =
{

g ∈ G : | f (g)− f (h)| ≥ 2(r+ ε)
}
.

Taking into account the inequality

| f (g)− f (h)| ≤ | f (g)− s|+ | f (h)− s|,

we observe that if g ∈ Bε , then

| f (g)− s|+ | f (h)− s| ≥ 2(r+ ε).

On the other hand, since h /∈ Aε we have

| f (h)− s|< r+ ε

and so

| f (g)− s|> r+ ε.

Hence, g ∈ Aε and so we have

Bε ⊂ Aε ∈ I .

Thus, Bε ∈ I that is, f is rough I -Cauchy sequence.

Definition 2.5. A function f ∈ w(G) is said to be rough I ∗-convergent to s, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I ) (i.e.,
G\M ∈ I ) and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− s|< r+ ε, (2.2)

for all n > k0 and all g ∈ M \Sn. In this case, we write

r−I ∗− lim f (g) = s.

In this convergence r is named the roughness degree. For r = 0, we get the I ∗-convergence.
If (2.2) holds, then s is an r-I ∗-limit point of the function f ∈ w(G), which is usually no longer unique (for r > 0).
Hence, we have to think the so-called rough I ∗-limit set of the function f ∈ w(G) defined by

I ∗−LIMr f := {s : f (g) r−I ∗
−→ s}.

For any FS {Sn} for G, the function f ∈ w(G) is said to be r-I ∗-convergent if

I ∗−LIMr f ̸= /0.
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Theorem 2.6. If f ∈ w(G) is rough I ∗-convergent to s, then f is rough I -convergent to s for any FS {Sn} for G.

Proof. For any FS {Sn} for G, let

r−I ∗− lim f (g) = s.

Then, there exists M ⊂ G, M ∈ F (I ) (i.e., H = G\M ∈ I ) and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− s|< r+ ε,

for all n > k0 and all g ∈ M \Sn. Therefore obviously,

A(ε) =
{

g ∈ G : | f (g)− s| ≥ r+ ε
}
⊂ H ∪Sk0 .

Since I is admissible,

H ∪Sk0 ∈ I

and so

A(ε) ∈ I .

Hence,

r−I − lim f (g) = s.

Definition 2.7. A function f ∈ w(G) is said to be rough I ∗-Cauchy sequence, for any FS {Sn} for G if there exists M ⊂ G, M ∈ F (I )
(i.e., G\M ∈ I ) and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− f (h)|< r+ ε,

for all n > k0 and g,h ∈ M \Sn.

Theorem 2.8. If f ∈ w(G) is rough I ∗-Cauchy for any FS {Sn} for G, then it is rough I -Cauchy for same sequence.

Proof. Let f ∈ w(G) be an rough I ∗-Cauchy for any FS {Sn} for G. Then by definition, there exists M ⊂ G, M ∈ F (I ) (i.e., G\M ∈ I )
and a k0 = k0(ε) ∈ N such that for every ε > 0

| f (g)− f (h)|< r+ ε,

for all n > k0 and g,h ∈ M \Sn. Let H = G\M. It is clearly H ∈ I and

A(ε) =
{

g ∈ G : | f (g)− f (h)| ≥ r+ ε
}
⊂ H ∪Sk0 .

Since I is admissible,

H ∪Sk0 ∈ I

and so

A(ε) ∈ I .

Consequently, f is rough I -Cauchy for same sequence.

Following theorems show relationships between I -convergence and I ∗-convergence, between I -Cauchy sequence and I ∗-Cauchy
sequence. These theorems can be proved like in [19, 25], these theorems are given without the proof.

Theorem 2.9. Let I ⊂ 2G be an admissible ideal with the property (AP). If f (g) ∈ w(G) is rough I -convergent to s, then f is rough
I ∗-convergent to s for any FS {Sn} for G.

Theorem 2.10. Let I ⊂ 2G be an admissible ideal with the property (AP). If f ∈ w(G) is rough I -Cauchy for any FS {Sn} for G, then it
is rough I ∗-Cauchy for same sequence.

3. Conclusion

In this paper, we introduced the concepts of rough I -convergence, rough I ∗-convergence, rough I -Cauchy sequence and rough I ∗-
Cauchy sequence of a function defined on discrete countable amenable semigroups. Also, we investigated relations between them. Then
after, The concepts given here can also be studied for double sequences.
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